MCP Hub
Back to servers

ASAM ODS odsbox jaquel MCP Server

An MCP server for ASAM ODS that provides tools for Jaquel query validation, connection management, schema inspection, and measurement data analysis.

Stars
2
Tools
16
Updated
Jan 2, 2026
Validated
Jan 9, 2026

Quick Install

uvx odsbox-jaquel-mcp

ASAM ODS Jaquel MCP Server

PyPI version Apache 2.0 License Python Status Build Status Stars

A Model Context Protocol (MCP) server for ASAM ODS with odsbox Jaquel query tools, ODS connection management, and measurement data access.


Overview

  • 🔌 Built-in ODS connection management
  • 🧰 MCP tools: schema inspection, query validation, direct ODS query execution and measurement data analysis
  • 🏗️ Entity hierarchy visualization (AoTest → AoMeasurement)
  • 🚀 Validate, explain and execute JAQueL queries for ASAM ODS
  • 📦 Bulk timeseries/submatrix data access and script generation
  • 📊 Automatic Jupyter notebook generation for measurement comparison
  • 📈 Matplotlib visualization code generation
  • 📉 Statistical measurement comparison and correlation analysis
  • 🔎 Measurement hierarchy exploration and discovery
  • 💡 Interactive starting prompts for guided workflows
  • 🤖 AI-guided bulk API learning with help_bulk_api tool
  • 📝 Comprehensive documentation and test suite

Documentation

Quick Start

Installation

Using uvx (Recommended)

The easiest way to use this MCP server is with uvx:

uvx odsbox-jaquel-mcp@latest

This automatically installs and runs the server without managing virtual environments.

Using pipx

For a persistent installation:

pipx install odsbox-jaquel-mcp
odsbox-jaquel-mcp

Traditional pip Installation

python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
pip install odsbox-jaquel-mcp[play]

Note: The [play] extra includes optional data analysis and visualization dependencies (pandas, matplotlib, scipy) for working with Jupyter notebooks and data analysis.

Running the Server

The server runs on stdin/stdout and waits for MCP messages from an MCP client:

# With uvx (auto-installs and runs)
uvx odsbox-jaquel-mcp@latest

# With pipx (if installed)
odsbox-jaquel-mcp

# With pip in virtual environment
python -m odsbox_jaquel_mcp

Configuration for MCP Clients

Add to your MCP client configuration (e.g., Claude Desktop, VS Code):

{
  "mcpServers": {
    "ods-mcp": {
      "type": "stdio",
      "command": "uvx",
      "args": ["odsbox-jaquel-mcp@latest"]
    }
  }
}

Or with pipx:

{
  "mcpServers": {
    "ods-mcp": {
      "type": "stdio",
      "command": "odsbox-jaquel-mcp"
    }
  }
}

Development

Setup

git clone https://github.com/totonga/odsbox-jaquel-mcp.git
cd odsbox-jaquel-mcp
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
pip install -e ".[dev]"

Common Tasks

# Run server locally
python -m odsbox_jaquel_mcp

# Run tests
pytest tests/
# or
python run_tests.py

# Code formatting and linting
black .
isort .
flake8 .

# Build package
python -m build

# Test with MCP Inspector
npx @modelcontextprotocol/inspector uvx odsbox-jaquel-mcp@latest

Contributing

Pull requests and issues are welcome! Please:

  • Follow PEP8 and use type hints
  • Add/maintain tests for new features
  • Update documentation as needed

License

This project is licensed under the Apache License 2.0. See LICENSE.

Links

Features

Core MCP Tools

Connection Management

  • ods_connect - Establish ODS connection
  • ods_disconnect - Close ODS connection
  • ods_get_connection_info - Get connection status

Schema Inspection

  • schema_get_entity - Get all fields for entity
  • schema_list_entities - List all entities with relationships
  • schema_test_to_measurement_hierarchy - Get ASAM ODS test hierarchy structure

Query Building & Validation

  • query_validate - Check query syntax and structure
  • query_describe - Get plain English explanation
  • query_execute - Execute query on ODS server

Timeseries/Submatrix Data Access

  • data_get_quantities - List measurement quantities for submatrix
  • data_read_submatrix - Read timeseries data from submatrix
  • data_generate_fetcher_script - Generate Python scripts for data fetching

Pattern & Example Library

  • query_generate_skeleton - Generate query skeleton (basic query) for entity
  • query_get_pattern - Get template for common patterns
  • query_list_patterns - List available patterns
  • query_get_operator_docs - Learn about operators

Starting Prompts

Discover and use the server's capabilities through interactive guided prompts:

  • ODS Server Connection - Set up and manage connections
  • Validate a Jaquel Query - Learn query validation
  • Explore Query Patterns - Find common query templates
  • Bulk Data Access - Master the 3-step Bulk API workflow
  • Measurement Analysis - Compare measurements and visualize data

See PROMPTS.md for complete details on all starting prompts.

Error Handling

Common Errors and Solutions

Not connected

{
  "error": "Model not loaded",
  "hint": "Connect to ODS server using 'ods_connect' tool first"
}

Solution: Call ods_connect first

Invalid entity

{
  "error": "Entity not found: InvalidEntity",
  "available_entities": ["AoUnit", "AoMeasurement", ...]
}

Solution: Use valid entity from available_entities

Invalid field

{
  "valid": false,
  "issues": ["Field 'invalid_field' not found"],
  "suggestions": ["id", "name", "description"]
}

Solution: Use one of the suggested fields

Connection failed

{
  "success": false,
  "error": "Connection refused",
  "error_type": "ConnectionError"
}

Solution: Check URL, server availability, firewall

Troubleshooting

Issue: Tools not discovered

  • Ensure mcp>=0.1.0 is installed
  • Check ToolsCapability is set in ServerCapabilities
  • Restart MCP client

Issue: Schema tools fail

  • Ensure ODS server is accessible
  • Check username/password
  • Verify network connectivity
  • Review server logs

Issue: Queries timeout

  • Increase request_timeout in connect
  • Reduce $rowlimit
  • Check ODS server performance

Performance Tips

  1. Use specific filters - Avoid querying all records
  2. Limit rows - Always use $rowlimit appropriately
  3. Select attributes - Only retrieve needed columns/attributes
  4. Index awareness - Filter on indexed fields first
  5. Connection reuse - Keep connection open when possible
  6. Cache schemas - Schema inspection is cached

Security Notes

  • Credentials are only held in memory during connection
  • Connection is cleaned up on disconnect
  • No credentials stored in config files
  • Use HTTPS with verify_certificate: true for production

Install in VSCode

install in VSCode{width=300px}

Support

For issues or questions:

  1. Check the error message and hints
  2. Review the documentation

Reviews

No reviews yet

Sign in to write a review