Code Executor MCP
Stop hitting the 2-3 MCP server wall. One MCP to orchestrate them all - 98% token savings, unlimited tool access.
Why Use Code Executor MCP?
- 98% Token Reduction - 141k → 1.6k tokens (load 1 executor vs 50+ tools)
- Sandboxed Security - Isolated Deno/Python execution, no internet by default, audit logging
- Type-Safe Wrappers - Auto-generated TypeScript/Python SDK with full IntelliSense
- Progressive Disclosure - Tools loaded on-demand inside sandbox, not upfront in context
- Zero Config Setup - Wizard auto-detects existing MCP servers from Claude Code/Cursor
- Production Ready - 606 tests, 95%+ coverage, Docker support, rate limiting
The Problem
You can't use more than 2-3 MCP servers before context exhaustion kills you.
- Research confirms: Tool accuracy drops significantly after 2-3 servers
- 6,490+ MCP servers available, but you can only use 2-3
- 47 tools = 141k tokens consumed before you write a single word
You're forced to choose: filesystem OR browser OR git OR AI tools. Never all of them.
The Solution
Disable all MCPs. Enable only code-executor-mcp.
# Before: 47 tools, 141k tokens
mcp__filesystem__read_file
mcp__filesystem__write_file
mcp__git__commit
mcp__browser__navigate
... 43 more tools
# After: 2 tools, 1.6k tokens (98% reduction)
run-typescript-code
run-python-code
Inside the sandbox, access ANY MCP tool on-demand:
// Claude writes this automatically
const file = await callMCPTool('mcp__filesystem__read_file', { path: '/src/app.ts' });
const review = await callMCPTool('mcp__zen__codereview', { code: file });
await callMCPTool('mcp__git__commit', { message: review.suggestions });
Result: Unlimited MCP access, zero context overhead.
How Progressive Disclosure Works
sequenceDiagram
participant C as Claude/Cursor
participant E as Code Executor
participant M as Other MCPs
Note over C: ❌ Traditional: Load 50+ tools (141k tokens)
Note over C: ✅ Code Executor: Load 2 tools (1.6k tokens)
C->>E: run-typescript-code
rect rgb(240, 248, 255)
Note right of E: Sandbox (on-demand discovery)
E->>M: callMCPTool('mcp__filesystem__read_file')
M-->>E: Return data
end
E-->>C: Return result
Traditional MCP exposes all 47 tools upfront (141k tokens). Code Executor exposes 2 tools with outputSchema (1.6k tokens), loading others on-demand inside the sandbox when needed.
Quick Start
Option 1: Interactive Setup Wizard (Recommended)
Don't configure manually. Our wizard does everything:
npm install -g code-executor-mcp
code-executor-mcp setup
What the wizard does:
- 🔍 Scans for existing MCP configs (Claude Code
~/.claude.json, Cursor~/.cursor/mcp.json, project.mcp.json) - ⚙️ Configures with smart defaults (or customize interactively)
- 🤖 NEW: Writes complete MCP configuration (sampling + security + sandbox + performance)
- 📦 Generates type-safe TypeScript/Python wrappers for autocomplete
- 📅 Optional: Sets up daily sync to keep wrappers updated
Complete Configuration (all written automatically):
- AI Sampling: Multi-provider support (Anthropic, OpenAI, Gemini, Grok, Perplexity)
- Security: Audit logging, content filtering, project restrictions
- Sandbox: Deno/Python execution with timeouts
- Performance: Rate limiting, schema caching, execution timeouts
Smart defaults (just press Enter):
- Port: 3333 | Timeout: 120s | Rate limit: 60/min
- Audit logs:
~/.code-executor/audit-logs/ - Sampling: Disabled (enable optionally with API key)
Supported AI Tools: Claude Code and Cursor (more coming soon)
First-Run Detection:
If you try to run code-executor-mcp without configuration:
❌ No MCP configuration found
📝 To configure code-executor-mcp, run:
code-executor-mcp setup
Configuration will be created at: ~/.claude.json
What are Wrappers?
The wizard generates TypeScript/Python wrapper functions for your MCP tools:
Before (manual):
const file = await callMCPTool('mcp__filesystem__read_file', {
path: '/src/app.ts'
});
After (wrapper):
import { filesystem } from './mcp-wrappers';
const file = await filesystem.readFile({ path: '/src/app.ts' });
Benefits:
- ✅ Type-safe with full IntelliSense/autocomplete
- ✅ Self-documenting JSDoc comments from schemas
- ✅ No need to remember exact tool names
- ✅ Matches actual MCP tool APIs (generated from schemas)
Keeping Wrappers Updated:
The wizard can set up daily sync (optional) to automatically regenerate wrappers:
- macOS: launchd plist runs at 4-6 AM
- Linux: systemd timer runs at 4-6 AM
- Windows: Task Scheduler runs at 4-6 AM
Daily sync re-scans your AI tool configs and project config for new/removed MCP servers. You can also manually update anytime with code-executor-mcp setup.
Option 2: Manual Configuration
1. Install
npm install -g code-executor-mcp
2. Configure
IMPORTANT: Code-executor discovers and merges MCP servers from BOTH locations:
- Global:
~/.claude.json(cross-project MCPs like voice-mode, personal tools) - Project:
.mcp.json(team-shared MCPs in your project root)
Config Merging: Global MCPs + Project MCPs = All available (project overrides global for duplicate names)
Add to your project .mcp.json or global ~/.claude.json:
{
"mcpServers": {
"code-executor": {
"command": "npx",
"args": ["-y", "code-executor-mcp"],
"env": {
"MCP_CONFIG_PATH": "/full/path/to/this/.mcp.json",
"DENO_PATH": "/path/to/.deno/bin/deno"
}
},
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/home/user"]
},
"playwright": {
"command": "npx",
"args": ["-y", "@playwright/mcp", "--headless"]
}
}
}
Configuration Guide:
MCP_CONFIG_PATH: Optional - points to project.mcp.json(still discovers global~/.claude.json)DENO_PATH: Runwhich denoto find it (required for TypeScript execution)- Global MCPs (
~/.claude.json): Personal servers available across all projects - Project MCPs (
.mcp.json): Team-shared servers in version control - Connection Flow: Claude Code → code-executor ONLY, then code-executor → all other MCPs
Quick Setup:
# Find Deno path
which deno
# Output: /home/user/.deno/bin/deno
# Project config (team-shared)
realpath .mcp.json
# Output: /home/user/projects/myproject/.mcp.json
# Global config (personal)
ls ~/.claude.json
# Output: /home/user/.claude.json
# Code-executor automatically merges both!
Minimal (Python-only):
{
"mcpServers": {
"code-executor": {
"command": "npx",
"args": ["-y", "code-executor-mcp"],
"env": {
"MCP_CONFIG_PATH": "/path/to/.mcp.json",
"PYTHON_ENABLED": "true"
}
}
}
}
3. Use
Claude can now access any MCP tool through code execution:
// Claude writes this when you ask to "read package.json"
const result = await callMCPTool('mcp__filesystem__read_file', {
path: './package.json'
});
console.log(result);
That's it. No configuration, no allowlists, no manual tool setup.
Real-World Example
Task: "Review auth.ts for security issues and commit fixes"
Without code-executor (impossible - hit context limit):
Can't enable: filesystem + git + zen codereview
Pick 2, manually do the 3rd
With code-executor (single AI message):
// Read file
const code = await callMCPTool('mcp__filesystem__read_file', {
path: '/src/auth.ts'
});
// Review with AI
const review = await callMCPTool('mcp__zen__codereview', {
step: 'Security audit',
code: code,
step_number: 1,
total_steps: 1
});
// Apply fixes
const fixed = review.suggestions.replace(/timing-attack/g, 'constant-time');
await callMCPTool('mcp__filesystem__write_file', {
path: '/src/auth.ts',
content: fixed
});
// Commit
await callMCPTool('mcp__git__commit', {
message: 'fix: constant-time token comparison'
});
console.log('Security fixes applied and committed');
All in ONE tool call. Variables persist, no context switching.
Features
| Feature | Description |
|---|---|
| 98% Token Savings | 141k → 1.6k tokens (47 tools → 2 tools) |
| Unlimited MCPs | Access 6,490+ MCP servers without context limits |
| Multi-Step Workflows | Chain multiple MCP calls in one execution |
| Auto-Discovery | AI agents find tools on-demand (0 token cost) |
| Deep Validation | AJV schema validation with helpful error messages |
| Security | Sandboxed (Deno/Python), allowlists, audit logs, rate limiting |
| Production Ready | TypeScript, 606 tests, 95%+ coverage, Docker support |
MCP Sampling (Beta) - LLM-in-the-Loop Execution
New in v1.0.0: Enable Claude to call itself during code execution for dynamic reasoning and analysis.
What is Sampling?
MCP Sampling allows TypeScript and Python code running in sandboxed environments to invoke Claude (via Anthropic's API) through a simple interface. Your code can now "ask Claude for help" mid-execution.
Use Cases:
- Code Analysis: Read a file, ask Claude to analyze it for security issues
- Multi-Step Reasoning: Have Claude break down complex tasks into steps
- Data Processing: Process each file/record with Claude's intelligence
- Interactive Debugging: Ask Claude to explain errors or suggest fixes
Quick Example
TypeScript:
// Enable sampling in your execution
const result = await callMCPTool('mcp__code-executor__executeTypescript', {
code: `
// Read a file
const code = await callMCPTool('mcp__filesystem__read_file', {
path: './auth.ts'
});
// Ask Claude to analyze it
const analysis = await llm.ask(
'Analyze this code for security vulnerabilities: ' + code
);
console.log(analysis);
`,
enableSampling: true, // Enable sampling
allowedTools: ['mcp__filesystem__read_file']
});
// Check sampling metrics
console.log('Rounds:', result.samplingMetrics.totalRounds);
console.log('Tokens:', result.samplingMetrics.totalTokens);
Python:
# Python example with sampling
code = """
import json
# Read data
data = call_mcp_tool('mcp__filesystem__read_file', {'path': './data.json'})
# Ask Claude to summarize
summary = await llm.ask(f'Summarize this data: {data}')
print(summary)
"""
result = call_mcp_tool('mcp__code-executor__executePython', {
'code': code,
'enableSampling': True
})
API Reference
TypeScript API:
llm.ask(prompt: string, options?)- Simple query, returns response textllm.think({messages, model?, maxTokens?, systemPrompt?})- Multi-turn conversation
Python API:
llm.ask(prompt: str, system_prompt='', max_tokens=1000)- Simple queryllm.think(messages, model='', max_tokens=1000, system_prompt='')- Multi-turn conversation
Security Controls
Sampling includes enterprise-grade security controls:
| Control | Description |
|---|---|
| Rate Limiting | Max 10 rounds, 10,000 tokens per execution (configurable) |
| Content Filtering | Auto-redacts secrets (API keys, tokens) and PII (emails, SSNs) |
| System Prompt Allowlist | Only pre-approved prompts accepted (prevents prompt injection) |
| Bearer Token Auth | 256-bit secure token per bridge session |
| Localhost Binding | Bridge server only accessible locally (no external access) |
| Audit Logging | All calls logged with SHA-256 hashes (no plaintext secrets) |
Configuration
Enable Sampling:
Option 1 - Per-Execution (recommended):
{ enableSampling: true }
Option 2 - Environment Variable:
export CODE_EXECUTOR_SAMPLING_ENABLED=true
export CODE_EXECUTOR_MAX_SAMPLING_ROUNDS=10
export CODE_EXECUTOR_MAX_SAMPLING_TOKENS=10000
Option 3 - Config File (~/.code-executor/config.json):
{
"sampling": {
"enabled": true,
"maxRoundsPerExecution": 10,
"maxTokensPerExecution": 10000,
"allowedSystemPrompts": [
"",
"You are a helpful assistant",
"You are a code analysis expert"
]
}
}
Hybrid Architecture
Code Executor automatically detects the best sampling method:
- MCP SDK Sampling (free) - If your MCP client supports
sampling/createMessage - Direct Anthropic API (paid) - Fallback if MCP sampling unavailable (requires
ANTHROPIC_API_KEY)
⚠️ Claude Code Limitation (as of November 2025):
Claude Code does not support MCP sampling yet (Issue #1785). When using Claude Code, sampling will fall back to Direct API mode (requires ANTHROPIC_API_KEY).
Compatible clients with MCP sampling:
- ✅ VS Code (v0.20.0+)
- ✅ GitHub Copilot
- ❌ Claude Code (pending Issue #1785)
When Claude Code adds sampling support, no code changes are needed - it will automatically switch to free MCP sampling.
Documentation
See the comprehensive sampling guide: docs/sampling.md
Covers:
- What/Why/How with architecture diagrams
- Complete API reference for TypeScript & Python
- Security model with threat matrix
- Configuration guide (env vars, config file, per-execution)
- Troubleshooting guide (8 common errors)
- Performance benchmarks (<50ms bridge startup)
- FAQ (15+ questions)
Security (Enterprise-Grade)
Code Executor doesn't just "run code." It secures it:
| Feature | Implementation |
|---|---|
| Sandbox Isolation | Deno (TypeScript) with restricted permissions, Pyodide WebAssembly (Python) |
| File Access Control | Non-root user (UID 1001), read-only root FS, explicit project path allowlist |
| Network Policy | NO internet by default, explicit domain allowlist required |
| Path Validation | Symlink resolution, directory traversal protection |
| Audit Logging | Every execution logged to ~/.code-executor/audit.jsonl with timestamps |
| Rate Limiting | 30 requests/min default (configurable per MCP) |
| Dangerous Pattern Detection | Blocks eval, exec, import, pickle.loads |
| Schema Validation | AJV deep validation before execution |
| SSRF Protection | Blocks AWS metadata, localhost, private IPs |
Example: Block all internet except GitHub API:
{
"security": {
"allowedDomains": ["api.github.com"],
"allowedProjects": ["/home/user/projects"]
}
}
Sandbox Architecture:
- Deno (TypeScript): V8 isolate, explicit permissions (--allow-read=/tmp), no shell access
- Pyodide (Python): WebAssembly sandbox, virtual filesystem, network restricted to MCP proxy only
- Docker (Optional): Non-root container, read-only root, minimal attack surface
See SECURITY.md for complete threat analysis and security model.
Advanced Usage
Allowlists (Optional Security)
Restrict which tools can be executed:
await callMCPTool('mcp__code-executor__run-typescript-code', {
code: `
// This works
await callMCPTool('mcp__filesystem__read_file', {...});
// This fails - not in allowlist
await callMCPTool('mcp__git__push', {...});
`,
allowedTools: ['mcp__filesystem__read_file']
});
Discovery Functions
AI agents can explore available tools:
// Find all tools
const tools = await discoverMCPTools();
// Search for specific functionality
const fileTools = await searchTools('file read write');
// Inspect schema
const schema = await getToolSchema('mcp__filesystem__read_file');
Zero token cost - discovery functions hidden from AI agent's tool list.
MCP Sampling: LLM-in-the-Loop Execution
Enable AI to autonomously call other AIs inside sandboxed code for iterative problem-solving, multi-agent collaboration, and complex workflows.
Key Features:
- Multi-Provider Support: Anthropic, OpenAI, Gemini, Grok, Perplexity
- Hybrid Mode: Free MCP sampling with automatic fallback to paid API
- Simple API:
llm.ask(prompt)andllm.think(messages)helpers - Security: Rate limiting, content filtering, localhost-only bridge
Setup:
# 1. Create .env file
cp .env.example .env
# 2. Add API key
echo "CODE_EXECUTOR_SAMPLING_ENABLED=true" >> .env
echo "CODE_EXECUTOR_AI_PROVIDER=gemini" >> .env
echo "GEMINI_API_KEY=your_key_here" >> .env
# 3. Use wrapper script (loads .env before starting)
# Update .mcp.json:
{
"code-executor": {
"command": "/path/to/start-with-env.sh"
}
}
See SAMPLING_SETUP.md for complete setup guide.
Basic Usage:
// Simple question
const answer = await llm.ask('What is 2+2?');
console.log(answer); // "4"
// Multi-turn reasoning
const analysis = await llm.think([
{ role: 'system', content: 'You are a code reviewer' },
{ role: 'user', content: 'Review this code: ...' }
]);
Advanced Example - Multi-Agent Code Review:
5 AI agents collaborate to review, secure, refactor, test, and document code:
// Agent 1: Code Reviewer
const review = await llm.ask('Review this code and list 5 issues...');
// Agent 2: Security Analyst
const security = await llm.ask('Analyze for vulnerabilities...');
// Agent 3: Refactoring Expert
const refactored = await llm.ask('Refactor using ES6+...');
// Agent 4: Test Generator
const tests = await llm.ask('Generate 3 Vitest test cases...');
// Agent 5: Documentation Writer
const docs = await llm.ask('Write JSDoc comments...');
Real-World Results:
- 5 AI agents, 10 seconds, ~2,600 tokens
- Complete code transformation: review → secure → refactor → test → document
- See
examples/multi-agent-code-review.tsfor full working example
Use Cases:
- 🤖 Multi-agent systems (code review, planning, execution)
- 🔄 Iterative refinement (generate → validate → improve loop)
- 🧪 Autonomous testing (generate tests, run them, fix failures)
- 📚 Auto-documentation (analyze code, write docs, validate examples)
Multi-Action Workflows
Complex automation in a single tool call:
// Launch browser → navigate → interact → extract
await callMCPTool('mcp__code-executor__run-typescript-code', {
code: `
await callMCPTool('mcp__playwright__launch', { headless: false });
await callMCPTool('mcp__playwright__navigate', { url: 'https://example.com' });
const title = await callMCPTool('mcp__playwright__evaluate', {
script: 'document.title'
});
console.log('Page title:', title);
`,
allowedTools: ['mcp__playwright__*']
});
State persists across calls - no context switching.
Python Execution (Pyodide WebAssembly)
Secure Python execution with Pyodide sandbox:
Enable Python:
# Set environment variable (REQUIRED)
export PYTHON_SANDBOX_READY=true
# Enable in config
# .code-executor.json
{
"executors": {
"python": {
"enabled": true
}
}
}
Example - Python with MCP tools:
import asyncio
async def main():
# Discover available tools
tools = await discover_mcp_tools()
print(f'Found {len(tools)} tools')
# Call MCP tool to read file
content = await call_mcp_tool('mcp__filesystem__read_file', {
'path': '/tmp/data.json'
})
print(f'File content: {content}')
# Process data
import json
data = json.loads(content)
result = [x * 2 for x in data['numbers']]
print(f'Processed: {result}')
asyncio.run(main())
Security guarantees:
- ✅ WebAssembly sandbox (same security as Deno)
- ✅ Virtual filesystem (no host file access)
- ✅ Network restricted to authenticated MCP proxy
- ✅ No subprocess spawning
- ✅ Memory limited by V8 heap
Limitations:
- Pure Python only (no native C extensions unless WASM-compiled)
- ~2-3s first load (Pyodide npm package), <100ms cached
- No multiprocessing/threading (use async/await)
- 10-30% slower than native Python (WASM overhead acceptable for security)
See SECURITY.md for complete security model.
Installation Options
npm (Recommended)
npm install -g code-executor-mcp
code-executor-mcp
Docker (Production)
Quick Start:
docker pull aberemia24/code-executor-mcp:latest
docker run -p 3333:3333 aberemia24/code-executor-mcp:latest
With docker-compose (Recommended):
# 1. Copy example configuration
cp docker-compose.example.yml docker-compose.yml
# 2. Edit docker-compose.yml to add your API keys (optional)
# - Set CODE_EXECUTOR_SAMPLING_ENABLED="true"
# - Set your provider: CODE_EXECUTOR_AI_PROVIDER="gemini"
# - Add API key: GEMINI_API_KEY="your-key-here"
# 3. Start the service
docker-compose up -d
# 4. View logs
docker-compose logs -f
First-Run Auto-Configuration: Docker deployment automatically generates complete MCP configuration from environment variables on first run:
- ✅ All environment variables → comprehensive config
- ✅ Includes sampling, security, sandbox, and performance settings
- ✅ Config saved to
/app/config/.mcp.json - ✅ Persistent across container restarts (use volume mount)
See DOCKER_TESTING.md for security details and docker-compose.example.yml for all available configuration options.
Local Development
git clone https://github.com/aberemia24/code-executor-MCP.git
cd code-executor-mcp
npm install && npm run build
npm run server
Configuration
Complete Example (.mcp.json):
{
"mcpServers": {
"code-executor": {
"command": "npx",
"args": ["-y", "code-executor-mcp"],
"env": {
"MCP_CONFIG_PATH": "/absolute/path/to/.mcp.json",
"DENO_PATH": "/home/user/.deno/bin/deno",
"ENABLE_AUDIT_LOG": "true",
"AUDIT_LOG_PATH": "/home/user/.code-executor/audit.log",
"ALLOWED_PROJECTS": "/home/user/projects:/tmp"
}
},
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/home/user"]
},
"zen": {
"command": "uvx",
"args": ["--from", "git+https://github.com/zen-mcp.git", "zen-mcp-server"],
"env": {
"GEMINI_API_KEY": "your-key-here"
}
}
}
}
Environment Variables:
| Variable | Required | Description | Example |
|---|---|---|---|
MCP_CONFIG_PATH | ⚠️ Optional | Explicit path to project .mcp.json | /home/user/projects/myproject/.mcp.json |
DENO_PATH | ✅ For TypeScript | Path to Deno binary | /home/user/.deno/bin/deno |
ENABLE_AUDIT_LOG | ⚠️ Recommended | Enable security audit logging | true |
AUDIT_LOG_PATH | No | Custom audit log location | /var/log/code-executor/audit.log |
ALLOWED_PROJECTS | ⚠️ Recommended | Restrict file access | /home/user/projects:/tmp |
PYTHON_ENABLED | No | Enable Python executor | true (default) |
Security Note: Store API keys in environment variables, not directly in config files.
Multi-Provider AI Sampling Configuration
NEW: Support for 5 AI providers (Anthropic, OpenAI, Gemini, Grok, Perplexity) with automatic provider-specific model selection.
Quick Setup:
# 1. Copy example config
cp .env.example .env
# 2. Edit .env and add your API key
CODE_EXECUTOR_SAMPLING_ENABLED=true
CODE_EXECUTOR_AI_PROVIDER=gemini # cheapest option!
GEMINI_API_KEY=your-key-here
# 3. Start server
npm start
Provider Comparison (January 2025):
| Provider | Default Model | Cost (Input/Output per MTok) | Best For |
|---|---|---|---|
| Gemini ⭐ | gemini-2.5-flash-lite | $0.10 / $0.40 | Cheapest + FREE tier |
| Grok | grok-4-1-fast-non-reasoning | $0.20 / $0.50 | 2M context, fast |
| OpenAI | gpt-4o-mini | $0.15 / $0.60 | Popular, reliable |
| Perplexity | sonar | $1.00 / $1.00 | Real-time search |
| Anthropic | claude-haiku-4-5-20251001 | $1.00 / $5.00 | Premium quality |
Configuration Options: See .env.example for full list of sampling configuration options including:
- API keys for all providers
- Model allowlists
- Rate limiting & quotas
- Content filtering
- System prompt controls
Auto-discovery (NEW in v0.7.3): Code-executor automatically discovers and merges:
~/.claude.json(global/personal MCPs).mcp.json(project MCPs)MCP_CONFIG_PATHif set (explicit override, still merges with global)
No configuration needed - just add MCPs to either location and code-executor finds them all!
TypeScript Support
Full type definitions included:
import { MCPClientPool, executeTypescript, type ToolSchema } from 'code-executor-mcp';
const pool = new MCPClientPool();
await pool.initialize('/path/to/.mcp.json');
const result = await executeTypescript({
code: `const tools = await discoverMCPTools(); console.log(tools.length);`,
allowedTools: ['mcp__*'],
timeoutMs: 30000
});
Performance
| Metric | Value |
|---|---|
| Token savings | 98% (141k → 1.6k) |
| Tool discovery | <5ms (cached), 50-100ms (first call) |
| Validation | <1ms per tool call |
| Sandbox startup | ~200ms (Deno), ~2-3s first/~100ms cached (Pyodide) |
| Test coverage | 606 tests, 95%+ security, 90%+ overall |
Documentation
- AGENTS.md - Repository guidelines for AI agents
- CONTRIBUTING.md - Development setup and workflow
- SECURITY.md - Security model and threat analysis
- DOCKER_TESTING.md - Docker security details
- CHANGELOG.md - Version history
FAQ
Q: Do I need to configure each MCP server?
A: No. Code-executor auto-discovers MCPs from ~/.claude.json (global) AND .mcp.json (project). Just add MCPs to either location.
Q: How does global + project config merging work? A: Code-executor finds and merges both:
- Global (
~/.claude.json): Personal MCPs available everywhere - Project (
.mcp.json): Team MCPs in version control - Result: All MCPs available, project configs override global for duplicate names
Q: How does validation work? A: AJV validates all tool calls against live schemas. On error, you get a detailed message showing expected parameters.
Q: What about Python support?
A: Full Python sandbox via Pyodide WebAssembly. Requires PYTHON_SANDBOX_READY=true environment variable. Same security model as Deno (WASM isolation, virtual FS, network restricted). Pure Python only - no native C extensions unless WASM-compiled. See SECURITY.md for details.
Q: Can I use this in production? A: Yes. 606 tests, 95%+ coverage, Docker support, audit logging, rate limiting.
Q: Does this work with Claude Code only? A: Built for Claude Code. Untested on other MCP clients, but should work per MCP spec.
Contributing
Contributions welcome! See CONTRIBUTING.md for guidelines.
Code Quality Standards:
- ✅ TypeScript strict mode
- ✅ 90%+ test coverage on business logic
- ✅ ESLint + Prettier
- ✅ All PRs require passing tests
License
MIT - See LICENSE
Links
- npm: https://www.npmjs.com/package/code-executor-mcp
- Docker Hub: https://hub.docker.com/r/aberemia24/code-executor-mcp
- GitHub: https://github.com/aberemia24/code-executor-MCP
- Issues: https://github.com/aberemia24/code-executor-MCP/issues
Built with Claude Code | Based on Anthropic's Code Execution with MCP