🚀 Rhino Grasshopper MCP - AI-Powered Computational Design Assistant
An MCP (Model Context Protocol) server that brings AI capabilities directly into Rhino/Grasshopper workflows, featuring ML-based automatic layout optimization - a capability not found in any other publicly available tool.
🎯 What Makes This Different?
Unlike basic Grasshopper-to-LLM connectors that only generate code, this tool includes:
🧠 ML-Based Auto Layout (Industry First)
- DBSCAN clustering for automatic component grouping
- K-means clustering for fixed group counts
- User pattern learning with persistent preferences
- K-NN position prediction for optimal new component placement
- Wire crossing minimization algorithm
🎓 AI Mentoring System
- Performance prediction: Estimates optimization impact (e.g., "15-30% improvement expected")
- Pattern detection: Identifies inefficient patterns and suggests better alternatives
- Auto-grouping: Analyzes wire connectivity to suggest logical component groups
- Layout anomaly detection: Finds isolated, overlapping, or misaligned components
🔌 Live Rhino Integration
- Real-time connection to running Rhino/Grasshopper instances
- Execute Python code remotely in Rhino
- Get canvas state and trigger solves
- No file-based workflow required
📋 Features Overview
| Category | Features |
|---|---|
| Rhino Bridge | Live connection, remote Python execution, canvas state |
| GH File Ops | Parse .gh/.ghx files, analyze structure, extract components |
| Component Library | Searchable database of 500+ GH components |
| Code Generation | GHPython and C# script templates |
| AI Mentoring | Performance prediction, alternatives, auto-grouping |
| ML Layout | Clustering, position prediction, crossing minimization |
🛠️ Installation
git clone https://github.com/dongwoosuk/rhino-grasshopper-mcp.git
cd rhino-grasshopper-mcp
python -m venv .venv
.venv\Scripts\activate # Windows
pip install -e .
⚙️ Configuration
Add to your claude_desktop_config.json:
{
"mcpServers": {
"grasshopper": {
"command": "path/to/rhino_grasshopper_mcp/.venv/Scripts/python.exe",
"args": ["-m", "rhino_grasshopper_mcp"]
}
}
}
🔌 Live Rhino Connection (Optional)
To enable real-time Rhino/Grasshopper control:
- Open Rhino 7 or 8
- Run
EditPythonScriptcommand - Open and run
rhino_listener/rhino_bridge_listener.py - You'll see:
Rhino Bridge Listener started on localhost:8080
📚 Available Tools
Rhino Bridge (requires listener)
| Tool | Description |
|---|---|
rhino_status | Check connection status |
rhino_execute_python | Execute Python in Rhino |
gh_canvas_state | Get current canvas state |
gh_load_definition | Load a .gh file |
gh_solve | Trigger recompute |
AI Mentoring Tools
| Tool | Description |
|---|---|
predict_performance | Predict optimization impact |
suggest_alternatives | Detect patterns, suggest better approaches |
auto_group | Analyze connectivity, suggest groupings |
ml_layout_analysis | ML clustering analysis |
predict_component_position | K-NN based position prediction |
Pattern Detection Examples
The suggest_alternatives tool detects these inefficient patterns:
| Pattern | Better Alternative |
|---|---|
| Multiple Move components | Single Transform Matrix |
| Flatten + Graft sequence | Path Mapper |
| Python loops for geometry | Native GH components |
| Serial Boolean operations | Batch Boolean |
| Expression for simple math | Native Math components |
🏗️ Architecture
rhino_grasshopper_mcp/
├── rhino_grasshopper_mcp/
│ ├── bridge.py # Main MCP server
│ ├── rhino_bridge.py # TCP client to Rhino
│ ├── gh_file_ops.py # .gh/.ghx parsing
│ ├── component_library.py # Component database
│ ├── code_generator.py # Code templates
│ └── mentoring/
│ ├── ml_layout_learner.py # DBSCAN/K-means
│ ├── advanced_layout_learner.py # Advanced learning
│ ├── persistent_layout_learner.py # User patterns
│ ├── performance_predictor.py # Optimization prediction
│ ├── alternative_suggester.py # Pattern detection
│ ├── auto_grouper.py # Wire-based grouping
│ ├── wire_crossing_detector.py # Crossing detection
│ └── crossing_minimizer.py # Layout optimization
├── rhino_listener/
│ └── rhino_bridge_listener.py # Run IN Rhino
└── pyproject.toml
🤖 ML Layout System Details
How It Works
- Feature Extraction: Analyzes component positions, types, and connections
- Clustering: Groups components using DBSCAN or K-means
- Pattern Learning: Stores user preferences in
layout_preferences.json - Position Prediction: Uses K-NN to suggest optimal positions for new components
- Anomaly Detection: Identifies layout issues (isolated nodes, overlaps, wrong flow direction)
Supported Analyses
# Example: ML clustering analysis
result = ml_layout_analysis(gh_file_path, method="dbscan")
# Returns: clusters, anomalies, optimization suggestions
# Example: Position prediction
result = predict_component_position(gh_file_path, "Panel", near_component="Slider")
# Returns: predicted X, Y coordinates based on learned patterns
🎯 Use Cases
- Design Automation: Let AI handle repetitive Grasshopper tasks
- Code Review: Get suggestions for optimizing definitions
- Learning: AI mentoring for Grasshopper best practices
- Layout Cleanup: Automatic organization of messy definitions
- Team Standards: Consistent component arrangement across projects
📄 License
MIT License - see LICENSE file.
🙏 Acknowledgments
- Built on the Model Context Protocol by Anthropic
- Grasshopper by David Rutten / McNeel
- scikit-learn for ML algorithms
📬 Contact
Dongwoo Suk - Computational Design Specialist
- GitHub: dongwoosuk
- LinkedIn: dongwoosuk