MCP Hub
Back to servers

KnowledgeMCP

Model Context Protocol (MCP) server for local vector storage & semantic search (ChromaDB, OCR, async ingestion).

Stars
4
Forks
1
Tools
11
Updated
Nov 22, 2025
Validated
Jan 9, 2026

MseeP.ai Security Assessment Badge

MCP Knowledge Server

A Model Context Protocol (MCP) server that enables AI coding assistants and agentic tools to leverage local knowledge through semantic search.

Status: ✅ Fully Operational - All user stories implemented and verified

Features

  • Semantic Search: Natural language queries over your document collection
  • Multi-Context Support: Organize documents into separate contexts for focused search
  • Multi-Format Support: PDF, DOCX, PPTX, XLSX, HTML, and images (JPG, PNG, SVG)
  • Smart OCR: Automatically detects scan-only PDFs and applies OCR when needed
  • Async Processing: Background indexing with progress tracking
  • Persistent Storage: ChromaDB vector store with reliable document removal
  • HTTP & Stdio Transports: Compatible with GitHub Copilot CLI and Claude Desktop
  • MCP Integration: Compatible with Claude Desktop, GitHub Copilot, and other MCP clients
  • Local & Private: All processing happens locally, no data leaves your system

Multi-Context Organization

Organize your documents into separate contexts for better organization and focused search results.

What are Contexts?

Contexts are isolated knowledge domains that let you:

  • Organize by Topic: Separate AWS docs from healthcare docs from project-specific docs
  • Search Efficiently: Search within a specific context for faster, more relevant results
  • Multi-Domain Documents: Add the same document to multiple contexts
  • Flexible Organization: Each context is a separate ChromaDB collection

Creating and Using Contexts

from src.services.context_service import ContextService

# Create contexts
context_service = ContextService()
await context_service.create_context("aws-architecture", "AWS WAFR and architecture docs")
await context_service.create_context("healthcare", "Medical and compliance documents")

# Add documents to specific contexts
doc_id = await service.add_document(
    Path("wafr.pdf"),
    contexts=["aws-architecture"]
)

# Add to multiple contexts
doc_id = await service.add_document(
    Path("fin-services-lens.pdf"),
    contexts=["aws-architecture", "healthcare"]
)

# Search within a context
results = await service.search("security pillar", context="aws-architecture")

# Search across all contexts
results = await service.search("best practices")  # No context = search all

MCP Context Tools

# Create context
knowledge-context-create aws-docs --description "AWS documentation"

# List all contexts
knowledge-context-list

# Show context details
knowledge-context-show aws-docs

# Add document to context
knowledge-add /path/to/doc.pdf --contexts aws-docs

# Add to multiple contexts
knowledge-add /path/to/doc.pdf --contexts aws-docs,healthcare

# Search in specific context
knowledge-search "security" --context aws-docs

# Delete context
knowledge-context-delete test-context --confirm true

Default Context

All documents without a specified context go to the "default" context automatically. This ensures backward compatibility with existing workflows.

Smart OCR Processing

The server includes intelligent OCR capabilities that automatically detect when OCR is needed:

Automatic OCR Detection

The system analyzes extracted text quality and automatically applies OCR when:

  • Extracted text is less than 100 characters (likely a scan)
  • Text has less than 70% alphanumeric characters (gibberish/encoding issues)

Force OCR Mode

You can force OCR processing even when text extraction is available:

# Python API
doc_id = await service.add_document(
    Path("document.pdf"),
    force_ocr=True  # Force OCR regardless of text quality
)

# MCP Tool (via GitHub Copilot or Claude)
knowledge-add /path/to/document.pdf --force_ocr=true

OCR Requirements

For OCR functionality, install Tesseract OCR:

# Ubuntu/Debian
sudo apt-get install tesseract-ocr poppler-utils

# macOS
brew install tesseract poppler

# Windows (via Chocolatey)
choco install tesseract poppler

OCR Configuration

Configure OCR behavior in config.yaml:

ocr:
  enabled: true              # Enable/disable OCR
  language: eng              # OCR language (eng, fra, deu, spa, etc.)
  force_ocr: false           # Global force OCR setting
  confidence_threshold: 0.0  # Accept all OCR results

Processing Method Tracking

All documents include metadata showing how they were processed:

  • text_extraction: Standard text extraction
  • ocr: OCR processing was used
  • image_analysis: Image-only documents

Check processing method in document metadata:

documents = service.list_documents()
for doc in documents:
    print(f"{doc.filename}: {doc.processing_method}")
    if doc.metadata.get("ocr_used"):
        confidence = doc.metadata.get("ocr_confidence", 0)
        print(f"  OCR confidence: {confidence:.2f}")

Quick Start

Prerequisites

  • Python 3.11+ or Python 3.12
  • Tesseract OCR (optional, for scanned documents)

Automated Setup

# One-command setup and demo
./quickstart.sh

This will:

  • ✅ Create virtual environment
  • ✅ Install dependencies
  • ✅ Download embedding model
  • ✅ Run end-to-end demo
  • ✅ Show next steps

Manual Installation

# Clone repository
git clone https://github.com/yourusername/KnowledgeMCP.git
cd KnowledgeMCP

# Create virtual environment
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Download embedding model (first run, ~91MB)
python -c "from sentence_transformers import SentenceTransformer; SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')"

Basic Usage

from pathlib import Path
from src.services.knowledge_service import KnowledgeService
import asyncio

async def main():
    # Initialize service
    service = KnowledgeService()
    
    # Add document to specific context
    doc_id = await service.add_document(
        Path("document.pdf"),
        metadata={"category": "technical"},
        contexts=["aws-docs"],  # Optional: organize by context
        async_processing=False
    )
    
    # Search within a context (faster, more focused)
    results = await service.search("neural networks", context="aws-docs", top_k=5)
    for result in results:
        print(f"{result['filename']}: {result['relevance_score']:.2f}")
        print(f"  Context: {result.get('context', 'default')}")
        print(f"  {result['chunk_text'][:100]}...")
    
    # Search across all contexts
    all_results = await service.search("neural networks", top_k=5)
    
    # Get statistics
    stats = service.get_statistics()
    print(f"\nDocuments: {stats['document_count']}")
    print(f"Chunks: {stats['total_chunks']}")
    print(f"Contexts: {stats['context_count']}")

asyncio.run(main())

Running the MCP Server

# Using the management script (recommended)
./server.sh start       # Start server in background
./server.sh status      # Check if running
./server.sh logs        # View live logs
./server.sh stop        # Stop server
./server.sh restart     # Restart server

# Or run directly (foreground)
python -m src.mcp.server

The server script provides:

  • ✅ Background process management
  • ✅ PID file tracking
  • ✅ Log file management
  • ✅ Status checking
  • ✅ Graceful shutdown

Running Tests

# Unit tests
pytest tests/unit/ -v

# Integration tests
pytest tests/integration/ -v

# End-to-end demo
python tests/e2e_demo.py

MCP Tools Available

The server exposes 11 MCP tools for AI assistants:

Document Management

  1. knowledge-add: Add documents to knowledge base (with optional context assignment)
  2. knowledge-search: Semantic search with natural language queries (context-aware)
  3. knowledge-show: List all documents (filterable by context)
  4. knowledge-remove: Remove specific documents
  5. knowledge-clear: Clear entire knowledge base
  6. knowledge-status: Get statistics and health status
  7. knowledge-task-status: Check async processing task status

Context Management

  1. knowledge-context-create: Create a new context for organizing documents
  2. knowledge-context-list: List all contexts with statistics
  3. knowledge-context-show: Show details of a specific context
  4. knowledge-context-delete: Delete a context (documents remain in other contexts)

Configuration

The server is configured via config.yaml in the project root. A default configuration is provided.

Configuration File

# config.yaml - Default configuration provided
storage:
  documents_path: ./data/documents
  vector_db_path: ./data/chromadb

embedding:
  model_name: sentence-transformers/all-MiniLM-L6-v2
  batch_size: 32
  device: cpu

chunking:
  chunk_size: 500
  chunk_overlap: 50
  strategy: sentence

processing:
  max_concurrent_tasks: 3
  max_file_size_mb: 100

ocr:
  enabled: true
  language: eng
  force_ocr: false
  confidence_threshold: 0.0  # Accept all OCR results

logging:
  level: INFO
  format: text

search:
  default_top_k: 10
  max_top_k: 50

Custom Configuration

Create a custom configuration file:

# Copy template
cp config.yaml.template config.yaml.local

# Edit your settings
nano config.yaml.local

# The server will use config.yaml.local if it exists

Environment Variables

Configuration can be overridden with environment variables (prefix with KNOWLEDGE_):

# Override storage path
export KNOWLEDGE_STORAGE__DOCUMENTS_PATH=/custom/path

# Increase batch size for faster processing
export KNOWLEDGE_EMBEDDING__BATCH_SIZE=64

# Enable debug logging
export KNOWLEDGE_LOGGING__LEVEL=DEBUG

# Increase search results
export KNOWLEDGE_SEARCH__DEFAULT_TOP_K=20

# Use GPU if available
export KNOWLEDGE_EMBEDDING__DEVICE=cuda

Configuration Priority

  1. Environment variables (highest priority)
  2. config.yaml.local (if exists)
  3. config.yaml (default)

Key Settings

SettingDescriptionDefaultNotes
chunk_sizeCharacters per chunk500Larger = more context
batch_sizeEmbeddings per batch32Higher = faster, more RAM
deviceComputation devicecpuUse 'cuda' for GPU
max_file_size_mbMax file size100Increase for large docs
log_levelLogging verbosityINFOUse DEBUG for development
collection_prefixChromaDB collection prefixknowledge_Used for context collections
default_contextDefault context namedefaultBackward compatibility

Integration with AI Assistants

Claude Desktop

Add to claude_desktop_config.json:

{
  "mcpServers": {
    "knowledge": {
      "command": "python",
      "args": ["-m", "src.mcp.server"],
      "cwd": "/path/to/KnowledgeMCP",
      "env": {
        "KNOWLEDGE_STORAGE__DOCUMENTS_PATH": "/path/to/docs"
      }
    }
  }
}

Note: Claude Desktop uses stdio transport. The server automatically detects the transport mode.

GitHub Copilot CLI

The server exposes an HTTP endpoint for Copilot CLI integration using MCP Streamable HTTP.

Step 1: Start the server

./server.sh start

Step 2: Configure Copilot CLI

Add to ~/.copilot/mcp-config.json:

{
  "knowledge": {
    "type": "http",
    "url": "http://localhost:3000"
  }
}

Step 3: Verify integration

In Copilot CLI, the following tools will be available:

  • knowledge-add - Add documents to knowledge base
  • knowledge-search - Search with natural language queries
  • knowledge-show - List all documents
  • knowledge-remove - Remove documents
  • knowledge-clear - Clear knowledge base
  • knowledge-status - Get statistics
  • knowledge-task-status - Check processing status

Example usage in Copilot CLI:

# Create organized contexts
> knowledge-context-create aws-docs --description "AWS architecture documents"

# Add documents to specific contexts
> knowledge-add /path/to/wafr.pdf --contexts aws-docs

# Search within a context for focused results
> knowledge-search "security pillar" --context aws-docs

# Ask Copilot to use the knowledge base
> What are the AWS WAFR security best practices?

Architecture

  • Vector Database: ChromaDB for semantic search with persistent storage
  • Embedding Model: all-MiniLM-L6-v2 (384 dimensions, fast inference)
  • OCR Engine: Tesseract for scanned documents
  • Protocol: MCP over HTTP (Streamable HTTP) and stdio transports
  • Server Framework: FastMCP for HTTP endpoint management

Performance

Verified performance on standard hardware (4-core CPU, 8GB RAM):

  • Indexing: Documents processed in <1s (HTML), up to 30s (large PDFs)
  • Search: <200ms for knowledge bases with dozens of documents
  • Memory: <500MB baseline, scales with document count
  • Embeddings: Batch processing, model cached locally

Project Structure

KnowledgeMCP/
├── src/                    # Source code
│   ├── models/            # Data models (Document, Embedding, etc.)
│   ├── services/          # Core services (KnowledgeService, VectorStore)
│   ├── processors/        # Document processors (PDF, DOCX, etc.)
│   ├── mcp/              # MCP server and tools
│   ├── config/           # Configuration management
│   └── utils/            # Utilities (chunking, validation, logging)
├── tests/                 # Test suite
│   ├── unit/             # Unit tests
│   ├── integration/      # Integration tests
│   └── e2e_demo.py       # End-to-end demonstration
├── docs/                  # Documentation
│   └── SERVER_MANAGEMENT.md  # Server management guide
├── server.sh             # Server management script ⭐
├── quickstart.sh         # Quick setup script ⭐
└── README.md             # This file

Key Scripts

  • server.sh - Start/stop/status management
  • quickstart.sh - Automated setup and demo
  • tests/e2e_demo.py - Full system demonstration

Documentation

Development

Code Quality

# Format code
black src/ tests/

# Lint
ruff check src/ tests/

# Type check
mypy src/

Adding New Document Processors

  1. Create processor in src/processors/
  2. Inherit from BaseProcessor
  3. Implement extract_text() and extract_metadata()
  4. Register in TextExtractor

Verified User Stories

US1: Add Knowledge from Documents

  • Multi-format document ingestion
  • Intelligent text extraction vs OCR
  • Async processing with progress tracking
  • Multi-context assignment

US2: Search Knowledge Semantically

  • Natural language queries
  • Relevance-ranked results
  • Fast semantic search
  • Context-scoped and cross-context search

US3: Manage Knowledge Base

  • List all documents
  • Remove specific documents
  • Clear knowledge base
  • View statistics
  • Context filtering

US4: Integrate with AI Tools via MCP

  • 11 MCP tools implemented (7 document + 4 context tools)
  • JSON-RPC compatible
  • Ready for AI assistant integration

US5: Multi-Context Organization

  • Create and manage contexts
  • Add documents to multiple contexts
  • Search within specific contexts
  • Context isolation with separate ChromaDB collections

License

MIT

Contributing

Contributions welcome! Please read the specification and implementation plan before submitting PRs.

Support

  • Issues: GitHub Issues
  • Documentation: See docs/ and specs/ directories
  • Questions: Check quickstart guide and API contracts

Built with: Python, ChromaDB, Sentence Transformers, FastAPI, MCP SDK

Reviews

No reviews yet

Sign in to write a review