MCP Hub
Back to servers

LangchainMCP

A production-ready MCP server that wraps a LangChain agent as a single tool, enabling multi-step reasoning tasks with optional Playwright-based website accessibility analysis.

Stars
4
Forks
2
Tools
1
Updated
Jan 5, 2026
Validated
Jan 11, 2026

LangChain Agent MCP Server

A production-ready MCP server exposing LangChain agent capabilities through the Model Context Protocol, deployed on Google Cloud Run.

GitHub Stars GitHub Forks License

🚀 Overview

This is a standalone backend service that wraps a LangChain agent as a single, high-level MCP Tool. The server is built with FastAPI and deployed on Google Cloud Run, providing a scalable, production-ready solution for exposing AI agent capabilities to any MCP-compliant client.

Live Service: https://langchain-agent-mcp-server-554655392699.us-central1.run.app

✨ Features

  • MCP Compliance - Full Model Context Protocol support
  • LangChain Agent - Multi-step reasoning with ReAct pattern
  • Playwright Sandbox - Interactive preview of accessibility snapshots (NEW!)
  • Google Cloud Run - Scalable, serverless deployment
  • Tool Support - Extensible framework for custom tools
  • Production Ready - Error handling, logging, and monitoring
  • Docker Support - Containerized for easy deployment

🏗️ Architecture

ComponentTechnologyPurpose
Backend FrameworkFastAPIHigh-performance, asynchronous web server
Agent FrameworkLangChainMulti-step reasoning and tool execution
DeploymentGoogle Cloud RunServerless, auto-scaling hosting
ContainerizationDockerConsistent deployment environment
ProtocolModel Context Protocol (MCP)Standardized tool and context sharing

🛠️ Quick Start

Prerequisites

  • Python 3.11+
  • OpenAI API key
  • Google Cloud account (for Cloud Run deployment)
  • Docker (optional, for local testing)

Local Development

  1. Clone the repository:

    git clone https://github.com/mcpmessenger/LangchainMCP.git
    cd LangchainMCP
    
  2. Install dependencies:

    # Windows
    py -m pip install -r requirements.txt
    
    # Linux/Mac
    pip install -r requirements.txt
    
  3. Set up environment variables: Create a .env file:

    OPENAI_API_KEY=your-openai-api-key-here
    OPENAI_MODEL=gpt-4o-mini
    PORT=8000
    
  4. Run the server:

    # Windows
    py run_server.py
    
    # Linux/Mac
    python run_server.py
    
  5. Test the endpoints:

  6. Start the frontend (optional):

    # Install frontend dependencies (first time only)
    npm install
    
    # Start frontend dev server
    npm run dev
    

    Then visit http://localhost:8080/sandbox to use the Playwright Sandbox preview feature.

☁️ Google Cloud Run Deployment

The server is designed for deployment on Google Cloud Run. See our comprehensive deployment guides:

Quick Deploy

# Windows PowerShell
.\deploy-cloud-run.ps1 -ProjectId "your-project-id" -Region "us-central1"

# Linux/Mac
./deploy-cloud-run.sh your-project-id us-central1

Current Deployment

📡 API Endpoints

MCP Endpoints

Get Manifest

GET /mcp/manifest

Returns the MCP manifest declaring available tools.

Response:

{
  "name": "langchain-agent-mcp-server",
  "version": "1.0.0",
  "tools": [
    {
      "name": "agent_executor",
      "description": "Execute a complex, multi-step reasoning task...",
      "inputSchema": {
        "type": "object",
        "properties": {
          "query": {
            "type": "string",
            "description": "The user's query or task"
          },
          "system_instruction": {
            "type": "string",
            "description": "Optional system-level instructions to customize agent behavior"
          }
        },
        "required": ["query"]
      }
    }
  ]
}

Invoke Tool

POST /mcp/invoke
Content-Type: application/json

{
  "tool": "agent_executor",
  "arguments": {
    "query": "What is the capital of France?",
    "task_id": "optional-workflow-id"
  }
}

With System Instruction (Optional):

POST /mcp/invoke
Content-Type: application/json

{
  "tool": "agent_executor",
  "arguments": {
    "query": "Analyze Tesla stock",
    "system_instruction": "You are a financial analyst. Provide detailed analysis with specific numbers."
  }
}

Response:

{
  "content": [
    {
      "type": "text",
      "text": "The capital of France is Paris."
    }
  ],
  "isError": false
}

System Instructions

The agent_executor tool supports an optional system_instruction parameter that allows you to customize the agent's behavior on a per-invocation basis.

Usage:

  • Basic Query (uses default prompt):

    {
      "tool": "agent_executor",
      "arguments": {
        "query": "What is the weather today?"
      }
    }
    
  • Query with Custom Instruction:

    {
      "tool": "agent_executor",
      "arguments": {
        "query": "Explain quantum computing",
        "system_instruction": "You are a physics professor. Explain concepts clearly and use examples."
      }
    }
    
  • Personality Customization:

    {
      "tool": "agent_executor",
      "arguments": {
        "query": "Tell me about space",
        "system_instruction": "You are a pirate explaining complex topics. Use pirate terminology!"
      }
    }
    

Notes:

  • If system_instruction is omitted, the agent uses its default prompt
  • Empty or whitespace-only instructions are ignored (default prompt is used)
  • Each invocation with a custom instruction creates a new agent instance

Playwright Sandbox Endpoints

Generate Accessibility Snapshot

POST /api/playwright/snapshot
Content-Type: application/json

{
  "url": "wikipedia.org",
  "use_cache": true
}

Response:

{
  "snapshot": "[body]\n  Name: Wikipedia\n  [main]\n    Name: Main content...",
  "url": "https://wikipedia.org",
  "cached": false,
  "token_count": 3307
}

Features:

  • Generates structured accessibility snapshots of any website
  • Shows how AI "views" websites through structured data
  • Caching support for popular sites
  • Token count estimation
  • Windows-compatible (uses ProactorEventLoop)

Test Prompt Against Snapshot

POST /api/playwright/test-prompt
Content-Type: application/json

{
  "snapshot": "[body]\n  [button]\n    Name: Login",
  "prompt": "Find the login button"
}

Response:

{
  "matches": [
    {
      "line": 2,
      "content": "[button] Name: Login",
      "context": "..."
    }
  ],
  "prompt": "Find the login button",
  "total_matches": 1
}

Playwright Sandbox UI: Visit http://localhost:8080/sandbox to use the interactive preview feature:

  • Enter any URL to generate a snapshot
  • View live website side-by-side with AI accessibility snapshot
  • Test prompts to find elements in the snapshot
  • See token savings compared to full HTML/screenshots

Other Endpoints

  • GET / - Server information
  • GET /health - Health check
  • GET /api/tasks - Safe task summaries (optional monitoring)
  • GET /api/tasks/{task_id} - Safe task summary (optional monitoring)
  • GET /docs - Interactive API documentation (Swagger UI)

🔧 Configuration

Environment Variables

VariableDescriptionDefaultRequired
OPENAI_API_KEYOpenAI API key-✅ Yes
OPENAI_MODELOpenAI model to usegpt-4o-miniNo
PORTServer port8000No
API_KEYOptional API key for authentication-No
MAX_ITERATIONSMaximum agent iterations10No
DEFAULT_SYSTEM_INSTRUCTIONDefault system prompt (Glazyr)-No
VERBOSEEnable verbose loggingfalseNo
POLICY_ENFORCEMENTEnforce /mcp/invoke policy gatesfalseNo
MAX_QUERY_CHARSMax allowed query size5000000No
ALLOWLISTED_DOMAINSComma-separated domain allowlist (query URLs)-No
REDIS_URLEnable Redis state store + task monitoring-No
TASK_TTL_SECONDSTask summary TTL86400No
RECENT_TASKS_MAXRecent task index size200No

📚 Documentation

📖 Full Documentation Site - Complete documentation with examples (GitHub Pages)

Quick Links:

Build Docs Locally:

# Windows
.\build-docs.ps1 serve

# Linux/Mac
./build-docs.sh serve

Additional Guides:

🧪 Testing

# Test health endpoint
Invoke-WebRequest -Uri "https://langchain-agent-mcp-server-554655392699.us-central1.run.app/health"

# Test agent invocation
$body = @{
    tool = "agent_executor"
    arguments = @{
        query = "What is 2+2?"
    }
} | ConvertTo-Json

Invoke-WebRequest -Uri "https://langchain-agent-mcp-server-554655392699.us-central1.run.app/mcp/invoke" `
    -Method POST `
    -ContentType "application/json" `
    -Body $body

# Test with system instruction
$bodyWithInstruction = @{
    tool = "agent_executor"
    arguments = @{
        query = "What is 2+2?"
        system_instruction = "You are a math teacher. Explain your reasoning step by step."
    }
} | ConvertTo-Json

Invoke-WebRequest -Uri "https://langchain-agent-mcp-server-554655392699.us-central1.run.app/mcp/invoke" `
    -Method POST `
    -ContentType "application/json" `
    -Body $bodyWithInstruction

🎭 Playwright Sandbox Feature

The Playwright Sandbox is an interactive preview feature that demonstrates how AI agents "view" websites through structured accessibility data. This feature is particularly useful for understanding the value of structured snapshots compared to full HTML or screenshots.

Features

  • Dual-View Interface: See the live website alongside its structured accessibility snapshot
  • Token Efficiency: Compare token counts - snapshots are typically 90%+ smaller than full HTML
  • Interactive Testing: Test prompts to find elements in the snapshot
  • Caching: Popular sites are cached for faster demo results
  • Windows Compatible: Fixed NotImplementedError on Windows using ProactorEventLoop

Quick Start

  1. Install Playwright:

    py -m pip install playwright
    py -m playwright install chromium
    
  2. Start Backend:

    py run_server.py
    
  3. Start Frontend:

    npm install  # First time only
    npm run dev
    
  4. Visit Sandbox: Open http://localhost:8080/sandbox and try URLs like:

    • wikipedia.org
    • github.com
    • google.com

How It Works

  1. Enter a URL - The system navigates to the website using Playwright
  2. Generate Snapshot - Extracts structured accessibility information (roles, names, descriptions)
  3. View Comparison - See the live site vs. the AI's structured view
  4. Test Prompts - Try asking the AI to find specific elements

Technical Details

  • Backend: FastAPI endpoint with Playwright integration
  • Frontend: React + Vite with TanStack Query
  • Event Loop: Uses ProactorEventLoop on Windows for subprocess support
  • Stealth Mode: Anti-bot detection measures for better compatibility
  • Error Handling: Graceful handling of sites that block automated access

See PLAYWRIGHT_SANDBOX_SETUP.md for detailed setup instructions.

🏗️ Project Structure

.
├── src/
│   ├── main.py              # FastAPI application with MCP endpoints
│   ├── agent.py             # LangChain agent definition and tools
│   ├── pages/
│   │   └── Sandbox.tsx      # Playwright Sandbox UI component
│   ├── mcp_manifest.json    # MCP manifest configuration
│   └── start.sh             # Cloud Run startup script
├── tests/
│   └── test_mcp_endpoints.py # Test suite
├── Dockerfile               # Container configuration
├── requirements.txt         # Python dependencies (includes playwright)
├── deploy-cloud-run.ps1     # Windows deployment script
├── deploy-cloud-run.sh      # Linux/Mac deployment script
└── cloudbuild.yaml          # Cloud Build configuration

🚀 Deployment Options

Google Cloud Run (Recommended)

  • Scalable - Auto-scales based on traffic
  • Serverless - Pay only for what you use
  • Managed - No infrastructure to manage
  • Fast - Low latency with global CDN

See DEPLOY_CLOUD_RUN_WINDOWS.md for detailed instructions.

Docker (Local/Other Platforms)

docker build -t langchain-agent-mcp-server .
docker run -p 8000:8000 -e OPENAI_API_KEY=your-key langchain-agent-mcp-server

📊 Performance

  • P95 Latency: < 5 seconds for standard 3-step ReAct chains
  • Scalability: Horizontal scaling on Cloud Run
  • Uptime: 99.9% target (Cloud Run SLA)
  • Throughput: Handles concurrent requests efficiently

🔒 Security

  • API key authentication (optional)
  • Environment variable management
  • Secret Manager integration (Cloud Run)
  • HTTPS by default (Cloud Run)
  • CORS configuration

🤝 Contributing

We welcome contributions! Please see our contributing guidelines.

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request

📜 License

This project is licensed under the MIT License.

🔗 Links

🙏 Acknowledgments


Status: ✅ Production-ready and deployed on Google Cloud Run

Reviews

No reviews yet

Sign in to write a review