MCP Hub
Back to servers

mcpstore

A comprehensive orchestration layer for MCP (Model Context Protocol) services that enables developers to manage, group, and adapt MCP tools for major AI frameworks like LangChain and AutoGen.

Stars
418
Forks
32
Tools
17
Updated
Dec 5, 2025
Validated
Jan 9, 2026

mcpstore 是什么?

mcpstore 是面向开发者的开箱即用的 MCP 服务编排层:用一个 Store 统一管理服务,并将 MCP 适配给 AI 框架LangChain等使用。

简单示例

首先只需要需要初始化一个store

from mcpstore import MCPStore
store = MCPStore.setup_store()

现在就有了一个 store,后续只需要围绕这个store去添加或者操作你的服务,store 会维护和管理这些 MCP 服务。

给store添加第一个服务

#在上面的代码下面加入
store.for_store().add_service({"mcpServers": {"mcpstore_wiki": {"url": "https://www.mcpstore.wiki/mcp"}}})
store.for_store().wait_service("mcpstore_wiki")

通过add方法便捷添加服务,add_service方法支持多种mcp服务配置格式,主流的mcp配置格式都可以直接传入。wait方法可选,是否同步等待服务就绪。

将mcp适配转为langchain需要的对象

tools = store.for_store().for_langchain().list_tools()
print("loaded langchain tools:", len(tools))

简单链上即可直观的将mcp适配为langchain直接使用的tools列表

框架适配

会逐渐支持更多的框架

已支持框架获取工具
LangChaintools = store.for_store().for_langchain().list_tools()
LangGraphtools = store.for_store().for_langgraph().list_tools()
AutoGentools = store.for_store().for_autogen().list_tools()
CrewAItools = store.for_store().for_crewai().list_tools()
LlamaIndextools = store.for_store().for_llamaindex().list_tools()

现在就可以正常的使用langchain了

#添加上面的代码
from langchain.agents import create_agent
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
    temperature=0, 
    model="deepseek-chat",
    api_key="sk-*****",
    base_url="https://api.deepseek.com"
)
agent = create_agent(model=llm, tools=tools, system_prompt="你是一个助手,回答的时候带上表情")
events = agent.invoke({"messages": [{"role": "user", "content": "mcpstore怎么添加服务?"}]})
print(events)

快速开始

pip install mcpstore

Agent 分组

使用 for_agent(agent_id) 实现对mcp服务进行分组

agent_id1 = "agent1"
store.for_agent(agent_id1).add_service({"name": "mcpstore_wiki", "url": "https://www.mcpstore.wiki/mcp"})

agent_id2 = "agent2"
store.for_agent(agent_id2).add_service({"name": "playwright", "command": "npx", "args": ["@playwright/mcp"]})

agent1_tools = store.for_agent(agent_id1).list_tools()
agent2_tools = store.for_agent(agent_id2).list_tools()

store.for_agent(agent_id)store.for_store() 共享大部分函数接口,本质上是通过分组机制在全局范围内创建了一个逻辑子集。

通过为不同 Agent 分配专属服务实现服务的有效隔离,避免上下文过长。

与聚合服务hub_service(实验性)和快速生成 A2A Agent Card (计划支持)配合较好。

常用操作

动作命令示例
定位服务store.for_store().find_service("service_name")
更新服务store.for_store().update_service("service_name", new_config)
增量更新store.for_store().patch_service("service_name", {"headers": {"X-API-Key": "..."}})
删除服务store.for_store().delete_service("service_name")
重启服务store.for_store().restart_service("service_name")
断开服务store.for_store().disconnect_service("service_name")
健康检查store.for_store().check_services()
查看配置store.for_store().show_config()
服务详情store.for_store().get_service_info("service_name")
等待就绪store.for_store().wait_service("service_name", timeout=30)
聚合服务store.for_agent(agent_id).hub_services()
列出Agentstore.for_store().list_agents()
列出服务store.for_store().list_services()
列出工具store.for_store().list_tools()
定位工具store.for_store().find_tool("tool_name")
执行工具store.for_store().call_tool("tool_name", {"k": "v"})

缓存/Redis 后端

支持使用 Redis 作为共享缓存后端,用于跨进程/多实例共享服务与工具元数据。安装额外依赖:

pip install mcpstore[redis]
#或直接 单独 pip install redis

使用方式:在store初始化的时候通过 external_db 参数传入:

from mcpstore import MCPStore
store = MCPStore.setup_store(
    external_db={
        "cache": {
            "type": "redis",
            "url": "redis://localhost:6379/0",
            "password": None,
            "namespace": "demo_namespace"
        }
    }
)

更多的setup_store配置见文档

API 模式

启动api

通过SDK快速启动

from mcpstore import MCPStore
prod_store = MCPStore.setup_store()
prod_store.start_api_server(host="0.0.0.0", port=18200)

或者使用CLI快速启动

mcpstore run api

image-20250721212359929

示例页面:在线体验

常用接口

# 服务管理
POST /for_store/add_service
GET  /for_store/list_services
POST /for_store/delete_service

# 工具操作
GET  /for_store/list_tools
POST /for_store/use_tool

# 运行状态
GET  /for_store/get_stats
GET  /for_store/health

更多见接口文档: 详细文档

docker部署

Star History

Star History Chart


McpStore 仍在高频更新中,欢迎反馈与建议。

Reviews

No reviews yet

Sign in to write a review