mnehmos.trace.mcp
Static analysis engine for detecting schema mismatches between data producers and consumers.
What It Does
Trace MCP finds mismatches between:
- Backend API responses and frontend expectations
- MCP tool outputs and client code that uses them
- Service A's events and Service B's handlers
- REST endpoints and HTTP client calls
- GraphQL schemas and Apollo Client hooks
Producer returns: { characterClass: "Fighter", hitPoints: 45 }
Consumer expects: { class: "Fighter", hp: 45 }
Result: ❌ Mismatch detected before runtime
Features
Core Capabilities
| Feature | Description |
|---|---|
| Schema Extraction | Extract schemas from MCP tools, OpenAPI, TypeScript, tRPC, REST endpoints, GraphQL |
| Usage Tracing | Track how client code consumes schemas via property access patterns |
| Mismatch Detection | Compare producer schemas against consumer expectations |
| Code Generation | Scaffold consumer code from producer schemas (and vice versa) |
| Watch Mode | Continuous validation on file changes |
Phase 2 Capabilities
| Feature | Description |
|---|---|
| Pattern Matcher | Extensible pattern detection supporting call, decorator, property, export, and chain patterns |
| Import Resolution | Cross-file type resolution with import graph building and circular dependency handling |
| REST Detection | Express and Fastify endpoint extraction with validation middleware support |
| HTTP Client Tracing | fetch() and axios call detection with URL extraction and type inference |
| GraphQL Support | SDL schema parsing, Apollo Server resolvers, and Apollo Client hook tracing |
Phase 3 Capabilities
| Feature | Description |
|---|---|
| Python AST Parser | FastAPI, Flask, and MCP tool extraction with Pydantic model support |
| Go Language Parser | Struct/interface extraction with Chi, Gin, and stdlib HTTP handler detection |
| gRPC/Protobuf Support | Proto3 parsing with message, enum, service, and streaming RPC extraction |
| Python HTTP Clients | requests, httpx, and aiohttp library detection with response property tracing |
Test Coverage
1047 tests passing across 16 test suites:
| Test Suite | Tests |
|---|---|
| Pattern Matcher | 85 |
| REST Detection | 87 |
| HTTP Client Tracing | 90 |
| GraphQL Support | 109 |
| Import Resolution | 56 |
| Core (adapters, OpenAPI, tRPC) | 234 |
| Python AST | 121 |
| gRPC/Protobuf | 124 |
| Go Parser | 106 |
| Python HTTP Clients | 35 |
Installation
# Clone the repository
git clone https://github.com/Mnehmos/mnehmos.trace.mcp.git
# Navigate to the directory
cd mnehmos.trace.mcp
# Install dependencies
npm install
# Build the project
npm run build
Configuration
Add to your MCP client configuration (e.g., claude_desktop_config.json or Roo-Code settings):
{
"mcpServers": {
"trace-mcp": {
"command": "node",
"args": ["/path/to/trace-mcp/dist/index.js"],
"env": {}
}
}
}
Supported Formats
Trace MCP supports schema extraction and comparison across multiple specification formats through a pluggable adapter registry.
Summary of Supported Frameworks
| Category | Frameworks |
|---|---|
| API Specs | OpenAPI 3.0+, Swagger |
| RPC | MCP (Zod), tRPC, gRPC/Protobuf |
| REST Servers | Express, Fastify, FastAPI, Flask, Chi, Gin, Go stdlib |
| HTTP Clients | fetch(), axios, requests, httpx, aiohttp |
| GraphQL | SDL schemas, Apollo Server, Apollo Client |
| Type Systems | TypeScript interfaces, Zod schemas, Pydantic models, Go structs |
Supported Languages
| Language | Producer Detection | Consumer Tracing |
|---|---|---|
| TypeScript | MCP tools, tRPC, Express, Fastify, GraphQL resolvers | callTool(), fetch, axios, Apollo Client |
| Python | FastAPI, Flask, MCP tools, Pydantic models | requests, httpx, aiohttp |
| Go | Chi, Gin, stdlib handlers, structs, interfaces | — |
| Protobuf | Messages, enums, services, streaming RPCs | — |
MCP Server Schemas (Zod)
Extract MCP tool definitions from server source code using Zod schemas.
server.tool(
"get_character",
"Fetch character data",
{
characterId: z.string().describe("Character ID"),
},
async (args) => {
// implementation
}
);
Schema ID Format: endpoint:GET:/tools/get_character@./server.ts
OpenAPI / Swagger Specifications
Extract schemas from OpenAPI 3.0+ specifications, supporting endpoints, request bodies, responses, and component schemas.
openapi: 3.0.0
info:
title: Character API
version: 1.0.0
paths:
/characters/{id}:
get:
parameters:
- name: id
in: path
schema:
type: string
responses:
'200':
content:
application/json:
schema:
$ref: '#/components/schemas/Character'
components:
schemas:
Character:
type: object
properties:
id:
type: string
name:
type: string
class:
type: string
required:
- id
- name
- class
Schema ID Format: endpoint:GET:/characters/{id}@./api.yaml
Usage Example:
const result = await client.callTool("extract_schemas", {
rootDir: "./backend",
include: ["**/*.openapi.yaml", "**/*.swagger.json"],
});
TypeScript Interfaces & Types
Extract exported interfaces, type aliases, and enums from TypeScript source files. Supports utility types including Pick, Omit, Partial, Required, and Record.
export interface Character {
id: string;
name: string;
class: "Fighter" | "Wizard" | "Rogue";
hitPoints: number;
stats: {
strength: number;
dexterity: number;
constitution: number;
};
}
export type ReadonlyCharacter = Readonly<Character>;
export enum CharacterClass {
Fighter = "Fighter",
Wizard = "Wizard",
Rogue = "Rogue",
}
Schema ID Format: interface:Character@./types.ts
Supported Utility Types:
Pick<T, K>- Select properties from interfaceOmit<T, K>- Exclude properties from interfacePartial<T>- Make all properties optionalRequired<T>- Make all properties requiredRecord<K, T>- Object with specific keys and value type
Usage Example:
const result = await client.callTool("extract_schemas", {
rootDir: "./shared",
include: ["**/*.ts", "**/*.tsx"],
});
// Returns interfaces with ID format: interface:CharacterClass@./types.ts
tRPC Routers
Extract procedure schemas from tRPC routers, including input/output types, query, mutation, and subscription handlers. Handles nested routers and middleware.
import { z } from "zod";
import { publicProcedure, router } from "./trpc";
export const appRouter = router({
users: router({
getById: publicProcedure
.input(z.string())
.output(z.object({
id: z.string(),
name: z.string(),
email: z.string().email(),
}))
.query(async ({ input }) => {
// implementation
}),
create: publicProcedure
.input(z.object({
name: z.string(),
email: z.string().email(),
}))
.output(z.object({
id: z.string(),
name: z.string(),
email: z.string(),
}))
.mutation(async ({ input }) => {
// implementation
}),
onChange: publicProcedure
.output(z.object({
userId: z.string(),
action: z.enum(["created", "updated", "deleted"]),
}))
.subscription(async () => {
// implementation
}),
}),
});
Schema ID Format: trpc:users.getById@./router.ts
Detected Elements:
- Router definitions (
router({ ... })) - Nested routers (
users: router({ ... })) - Procedures (
.query(),.mutation(),.subscription()) - Input schemas (
.input(zod_schema)) - Output schemas (
.output(zod_schema))
Usage Example:
const result = await client.callTool("extract_schemas", {
rootDir: "./backend/trpc",
include: ["**/*.router.ts"],
});
// Returns procedures with ID format: trpc:users.getById@./router.ts
REST Endpoints (Express & Fastify)
Extract endpoint schemas from Express and Fastify applications, including route parameters, request bodies, response types, and validation middleware.
Express
import express from "express";
import { z } from "zod";
const app = express();
// Basic route with typed response
app.get("/users/:id", (req, res) => {
const user: User = getUserById(req.params.id);
res.json(user);
});
// Route with Zod validation middleware
app.post("/users",
validate(z.object({
name: z.string(),
email: z.string().email(),
})),
(req, res) => {
res.status(201).json({ id: "123", ...req.body });
}
);
// Router-based routes
const router = express.Router();
router.get("/health", (req, res) => res.json({ status: "ok" }));
app.use("/api", router);
Schema ID Format: rest:GET:/users/:id@./app.ts
Fastify
import Fastify from "fastify";
const fastify = Fastify();
// Route with JSON Schema validation
fastify.post("/users", {
schema: {
body: {
type: "object",
properties: {
name: { type: "string" },
email: { type: "string", format: "email" },
},
required: ["name", "email"],
},
response: {
201: {
type: "object",
properties: {
id: { type: "string" },
name: { type: "string" },
},
},
},
},
}, async (request, reply) => {
return { id: "123", name: request.body.name };
});
// Shorthand methods
fastify.get("/health", async () => ({ status: "ok" }));
Schema ID Format: rest:POST:/users@./server.ts
Detected Elements:
- HTTP methods: GET, POST, PUT, PATCH, DELETE
- Path parameters (
:id,:userId) - Request body schemas (Zod, Joi, celebrate, JSON Schema)
- Response type inference
- Router prefixes and mounting
Usage Example:
const result = await client.callTool("extract_schemas", {
rootDir: "./backend",
include: ["**/*.ts"],
});
// Returns endpoints with ID format: rest:GET:/users/:id@./routes.ts
HTTP Clients (fetch & axios)
Trace HTTP client calls to detect consumer expectations for API responses.
fetch() API
// Basic fetch with type assertion
const response = await fetch("/api/users");
const users: User[] = await response.json();
// fetch with request options
const newUser = await fetch("/api/users", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ name: "Alice" }),
}).then(res => res.json()) as CreateUserResponse;
// Template literal URLs
const userId = "123";
const user = await fetch(`/api/users/${userId}`).then(r => r.json());
// Property access tracking
console.log(user.name, user.email, user.profile.avatar);
Detected Elements:
- URL extraction (static strings, template literals, variables)
- HTTP method detection
- Type assertions and generics
- Property access patterns on response data
axios
import axios from "axios";
// Basic GET request
const { data: users } = await axios.get<User[]>("/api/users");
// POST with typed response
const response = await axios.post<CreateUserResponse>("/api/users", {
name: "Bob",
email: "bob@example.com",
});
// Instance with base URL
const api = axios.create({ baseURL: "https://api.example.com" });
const profile = await api.get<Profile>("/me");
// Destructured property access
const { name, email } = response.data;
Schema ID Format: http-client:GET:/api/users@./client.ts
Detected Elements:
- axios methods:
.get(),.post(),.put(),.patch(),.delete() - Generic type parameters (
axios.get<User>) - Instance creation with
axios.create() - Base URL resolution
- Response data property access
Usage Example:
const result = await client.callTool("trace_usage", {
rootDir: "./frontend/src",
include: ["**/*.ts", "**/*.tsx"],
});
// Returns HTTP client calls with ID format: http-client:GET:/api/users@./api.ts
GraphQL (SDL & Apollo)
Extract schemas from GraphQL SDL files and trace Apollo Server resolvers and Apollo Client hooks.
SDL Schema Files
# schema.graphql
type User {
id: ID!
name: String!
email: String!
posts: [Post!]!
}
type Post {
id: ID!
title: String!
content: String!
author: User!
}
type Query {
user(id: ID!): User
users: [User!]!
post(id: ID!): Post
}
type Mutation {
createUser(name: String!, email: String!): User!
createPost(title: String!, content: String!, authorId: ID!): Post!
}
Schema ID Format: graphql:Query.user@./schema.graphql
Apollo Server Resolvers
import { ApolloServer } from "@apollo/server";
const resolvers = {
Query: {
user: async (_, { id }) => {
return db.users.findById(id);
},
users: async () => {
return db.users.findAll();
},
},
Mutation: {
createUser: async (_, { name, email }) => {
return db.users.create({ name, email });
},
},
User: {
posts: async (parent) => {
return db.posts.findByAuthor(parent.id);
},
},
};
const server = new ApolloServer({ typeDefs, resolvers });
Schema ID Format: graphql-resolver:Query.user@./resolvers.ts
Apollo Client Hooks
import { useQuery, useMutation, gql } from "@apollo/client";
const GET_USER = gql`
query GetUser($id: ID!) {
user(id: $id) {
id
name
email
}
}
`;
const CREATE_USER = gql`
mutation CreateUser($name: String!, $email: String!) {
createUser(name: $name, email: $email) {
id
name
}
}
`;
function UserProfile({ userId }: { userId: string }) {
const { data, loading, error } = useQuery(GET_USER, {
variables: { id: userId },
});
const [createUser] = useMutation(CREATE_USER);
if (loading) return <Spinner />;
if (error) return <Error message={error.message} />;
return <div>{data.user.name}</div>;
}
Schema ID Format: graphql-client:GetUser@./UserProfile.tsx
Detected Elements:
- SDL types: scalar, object, input, enum, interface, union
- Query and Mutation definitions
- Field arguments and return types
- Apollo Client hooks:
useQuery,useMutation,useLazyQuery,useSubscription - Operation names and variables
- Selected fields in queries
Usage Example:
// Extract GraphQL schemas
const schemas = await client.callTool("extract_schemas", {
rootDir: "./backend",
include: ["**/*.graphql", "**/resolvers.ts"],
});
// Trace Apollo Client usage
const usage = await client.callTool("trace_usage", {
rootDir: "./frontend/src",
include: ["**/*.tsx"],
});
// Compare for mismatches
const report = await client.callTool("compare", {
producerDir: "./backend",
consumerDir: "./frontend/src",
format: "markdown",
});
Python (FastAPI, Flask, MCP Tools)
Extract endpoint schemas from Python web frameworks and MCP tool definitions with full Pydantic model support.
FastAPI
from fastapi import FastAPI, APIRouter
from pydantic import BaseModel
from typing import Optional, List
class Character(BaseModel):
id: str
name: str
character_class: str
level: int = 1
skills: List[str] = []
class CreateCharacterRequest(BaseModel):
name: str
character_class: str
background: Optional[str] = None
app = FastAPI()
router = APIRouter(prefix="/api/v1")
@app.get("/characters/{character_id}")
async def get_character(character_id: str) -> Character:
return Character(id=character_id, name="Hero", character_class="Fighter")
@router.post("/characters")
async def create_character(request: CreateCharacterRequest) -> Character:
return Character(id="123", name=request.name, character_class=request.character_class)
app.include_router(router)
Schema ID Format: python:GET:/characters/{character_id}@./main.py
Flask
from flask import Flask, Blueprint, request, jsonify
app = Flask(__name__)
api = Blueprint("api", __name__, url_prefix="/api")
@app.route("/health")
def health_check():
return jsonify({"status": "ok"})
@api.route("/users/<user_id>", methods=["GET"])
def get_user(user_id):
return jsonify({"id": user_id, "name": "Alice"})
@api.route("/users", methods=["POST"])
def create_user():
data = request.get_json()
return jsonify({"id": "123", **data}), 201
app.register_blueprint(api)
Schema ID Format: python:GET:/api/users/<user_id>@./app.py
MCP Tools (Python)
from mcp import Server
server = Server("character-tools")
@server.tool()
async def get_character(character_id: str) -> dict:
"""Fetch character data by ID."""
return {"id": character_id, "name": "Hero", "class": "Fighter"}
@mcp.tool()
def roll_dice(dice: str, modifier: int = 0) -> dict:
"""Roll dice with optional modifier."""
return {"result": 15, "expression": dice, "modifier": modifier}
Schema ID Format: python-mcp:get_character@./tools.py
Pydantic Models
from pydantic import BaseModel, Field
from typing import Optional, List, Dict, Union, Literal
from enum import Enum
class CharacterClass(str, Enum):
FIGHTER = "Fighter"
WIZARD = "Wizard"
ROGUE = "Rogue"
class Stats(BaseModel):
strength: int = Field(ge=1, le=20)
dexterity: int = Field(ge=1, le=20)
constitution: int = Field(ge=1, le=20)
class Character(BaseModel):
id: str
name: str
character_class: CharacterClass
level: int = Field(default=1, ge=1, le=20)
stats: Stats
equipment: List[str] = []
metadata: Optional[Dict[str, str]] = None
Detected Elements:
- Decorators:
@app.get(),@app.post(),@router.*,@app.route(),@blueprint.route() - MCP decorators:
@mcp.tool(),@server.tool() - Pydantic
BaseModelclasses with field extraction - Type annotations:
Optional,Union,List,Dict,Literal - Enum types
Usage Example:
const result = await client.callTool("extract_schemas", {
rootDir: "./backend",
include: ["**/*.py"],
});
// Returns endpoints with ID format: python:GET:/characters/{id}@./main.py
Go Language (Chi, Gin, stdlib)
Extract struct definitions, interfaces, and HTTP endpoint schemas from Go source files.
Structs with JSON Tags
package models
type Character struct {
ID string `json:"id"`
Name string `json:"name"`
Class string `json:"class"`
Level int `json:"level"`
HitPoints int `json:"hp"`
Skills []string `json:"skills,omitempty"`
}
type Stats struct {
Strength int `json:"str"`
Dexterity int `json:"dex"`
Constitution int `json:"con"`
}
// Embedded struct
type CharacterWithStats struct {
Character
Stats Stats `json:"stats"`
}
Schema ID Format: go-struct:Character@./models/character.go
Interfaces
package services
type CharacterService interface {
GetByID(id string) (*Character, error)
Create(req CreateRequest) (*Character, error)
Update(id string, req UpdateRequest) (*Character, error)
Delete(id string) error
}
type Repository interface {
Find(query Query) ([]Character, error)
Save(character *Character) error
}
Schema ID Format: go-interface:CharacterService@./services/character.go
stdlib HTTP Handlers
package main
import (
"encoding/json"
"net/http"
)
func main() {
http.HandleFunc("/health", healthHandler)
http.HandleFunc("/api/characters", charactersHandler)
http.HandleFunc("/api/characters/", characterByIDHandler)
http.ListenAndServe(":8080", nil)
}
func healthHandler(w http.ResponseWriter, r *http.Request) {
json.NewEncoder(w).Encode(map[string]string{"status": "ok"})
}
func charactersHandler(w http.ResponseWriter, r *http.Request) {
switch r.Method {
case http.MethodGet:
// List characters
case http.MethodPost:
// Create character
}
}
Schema ID Format: go-http:GET:/health@./main.go
Chi Router
package main
import (
"github.com/go-chi/chi/v5"
"net/http"
)
func main() {
r := chi.NewRouter()
r.Get("/health", healthHandler)
r.Route("/api/characters", func(r chi.Router) {
r.Get("/", listCharacters)
r.Post("/", createCharacter)
r.Get("/{id}", getCharacter) // Chi param: {id}
r.Put("/{id}", updateCharacter)
r.Delete("/{id}", deleteCharacter)
})
http.ListenAndServe(":8080", r)
}
Schema ID Format: go-http:GET:/api/characters/{id}@./main.go
Gin Framework
package main
import "github.com/gin-gonic/gin"
func main() {
r := gin.Default()
r.GET("/health", healthHandler)
api := r.Group("/api")
{
api.GET("/characters", listCharacters)
api.POST("/characters", createCharacter)
api.GET("/characters/:id", getCharacter) // Gin param: :id
api.PUT("/characters/:id", updateCharacter)
api.DELETE("/characters/:id", deleteCharacter)
}
r.Run(":8080")
}
Schema ID Format: go-http:GET:/api/characters/:id@./main.go
Detected Elements:
- Struct definitions with JSON tags
- Embedded structs
- Interface definitions
http.HandleFunc()patterns- Chi router:
r.Get(),r.Post(),r.Route(),{param}syntax - Gin framework:
r.GET(),r.POST(),r.Group(),:paramsyntax
Usage Example:
const result = await client.callTool("extract_schemas", {
rootDir: "./backend",
include: ["**/*.go"],
});
// Returns structs, interfaces, and endpoints
gRPC / Protobuf
Parse Protocol Buffer definitions (proto3) to extract message types, enums, services, and RPC methods.
Basic Messages
syntax = "proto3";
package character;
message Character {
string id = 1;
string name = 2;
CharacterClass character_class = 3;
int32 level = 4;
Stats stats = 5;
repeated string skills = 6;
}
message Stats {
int32 strength = 1;
int32 dexterity = 2;
int32 constitution = 3;
}
Schema ID Format: proto-message:character.Character@./character.proto
Enums
enum CharacterClass {
CHARACTER_CLASS_UNSPECIFIED = 0;
CHARACTER_CLASS_FIGHTER = 1;
CHARACTER_CLASS_WIZARD = 2;
CHARACTER_CLASS_ROGUE = 3;
}
enum DamageType {
DAMAGE_TYPE_UNSPECIFIED = 0;
DAMAGE_TYPE_SLASHING = 1;
DAMAGE_TYPE_PIERCING = 2;
DAMAGE_TYPE_FIRE = 3;
}
Schema ID Format: proto-enum:character.CharacterClass@./character.proto
Oneof and Map Fields
message Equipment {
string id = 1;
string name = 2;
oneof item_type {
Weapon weapon = 10;
Armor armor = 11;
Consumable consumable = 12;
}
}
message Inventory {
string character_id = 1;
map<string, int32> item_counts = 2;
map<string, Equipment> equipped = 3;
}
Schema ID Format: proto-message:character.Equipment@./equipment.proto
Services and RPCs
service CharacterService {
// Unary RPC
rpc GetCharacter(GetCharacterRequest) returns (Character);
// Server streaming
rpc ListCharacters(ListRequest) returns (stream Character);
// Client streaming
rpc UploadInventory(stream Item) returns (UploadResponse);
// Bidirectional streaming
rpc Chat(stream ChatMessage) returns (stream ChatMessage);
}
message GetCharacterRequest {
string id = 1;
}
message ListRequest {
int32 page_size = 1;
string page_token = 2;
}
Schema ID Format: proto-service:character.CharacterService@./character.proto
RPC Format: proto-rpc:CharacterService.GetCharacter@./character.proto
Well-Known Types
import "google/protobuf/timestamp.proto";
import "google/protobuf/duration.proto";
import "google/protobuf/any.proto";
import "google/protobuf/struct.proto";
message CharacterEvent {
string character_id = 1;
string event_type = 2;
google.protobuf.Timestamp created_at = 3;
google.protobuf.Duration duration = 4;
google.protobuf.Any payload = 5;
google.protobuf.Struct metadata = 6;
}
Detected Elements:
- Messages with all field types (scalar, message, enum, repeated)
- Enums with numeric values
oneoffield groupsmap<K, V>fields- Nested message definitions
- Service definitions with all streaming modes:
- Unary:
rpc Method(Request) returns (Response) - Server streaming:
rpc Method(Request) returns (stream Response) - Client streaming:
rpc Method(stream Request) returns (Response) - Bidirectional:
rpc Method(stream Request) returns (stream Response)
- Unary:
- Well-known types:
Timestamp,Duration,Any,Struct
Usage Example:
const result = await client.callTool("extract_schemas", {
rootDir: "./proto",
include: ["**/*.proto"],
});
// Returns messages, enums, and services
Python HTTP Clients (requests, httpx, aiohttp)
Trace HTTP client calls in Python code to detect consumer expectations.
requests Library
import requests
# Basic GET
response = requests.get("https://api.example.com/characters")
characters = response.json()
# GET with path parameter
character = requests.get(f"https://api.example.com/characters/{char_id}").json()
# POST with JSON body
new_char = requests.post(
"https://api.example.com/characters",
json={"name": "Hero", "class": "Fighter"}
).json()
# Session with base URL
session = requests.Session()
session.headers.update({"Authorization": "Bearer token"})
user = session.get("https://api.example.com/me").json()
# Property access tracking
print(character["name"], character["stats"]["strength"])
Schema ID Format: python-http:GET:/characters@./client.py
httpx Library
import httpx
# Sync client
response = httpx.get("https://api.example.com/characters")
data = response.json()
# Async client
async with httpx.AsyncClient(base_url="https://api.example.com") as client:
response = await client.get("/characters")
characters = response.json()
response = await client.post("/characters", json={"name": "Hero"})
new_char = response.json()
Schema ID Format: python-http:GET:/characters@./client.py
aiohttp Library
import aiohttp
async with aiohttp.ClientSession() as session:
# GET request
async with session.get("https://api.example.com/characters") as response:
characters = await response.json()
# POST request
async with session.post(
"https://api.example.com/characters",
json={"name": "Hero", "class": "Fighter"}
) as response:
new_char = await response.json()
# Property access
print(new_char["id"], new_char["name"])
Schema ID Format: python-http:POST:/characters@./client.py
Detected Elements:
requests.get(),requests.post(), etc.httpx.get(),httpx.post(),AsyncClientmethodsaiohttp.ClientSessionmethods- URL extraction (static strings, f-strings)
- HTTP method detection
- Response property access (dictionary key access)
Usage Example:
const result = await client.callTool("trace_usage", {
rootDir: "./python-client",
include: ["**/*.py"],
});
// Returns HTTP client calls with property access patterns
Architecture
Pattern Matcher Framework
The pattern matcher provides an extensible system for detecting code patterns across different frameworks. Located in src/patterns/:
src/patterns/
├── base.ts # BasePattern abstract class
├── types.ts # PatternMatch, PatternContext interfaces
├── registry.ts # PatternRegistry for plugin management
├── extractors.ts # Node extractors for AST traversal
├── errors.ts # Pattern-specific error types
├── rest/ # Express, Fastify patterns
├── http-clients/ # fetch, axios patterns
└── graphql/ # Apollo patterns
Supported Pattern Types:
- Call patterns: Function/method calls (
app.get(),fetch()) - Decorator patterns: TypeScript/Python decorators (
@Controller()) - Property patterns: Object property assignments
- Export patterns: Module exports (
export const router = ...) - Chain patterns: Method chaining (
router.get().post())
Import Resolution
Cross-file type resolution with import graph building. Located in src/languages/import-resolver.ts:
- Resolves
import { Type } from "./types" - Handles barrel exports (
export * from) - Supports path aliases via tsconfig.json
- Detects and handles circular dependencies
- Caches resolved types for performance
Tools Reference
Trace MCP provides 11 tools organized into three categories:
Core Analysis Tools
| Tool | Description |
|---|---|
extract_schemas | Extract MCP tool definitions from server source code |
extract_file | Extract schemas from a single file |
trace_usage | Trace how client code uses MCP tools |
trace_file | Trace tool usage in a single file |
compare | Full pipeline: extract → trace → compare → report |
Code Generation Tools
| Tool | Description |
|---|---|
scaffold_consumer | Generate client code from producer schema |
scaffold_producer | Generate server stub from client usage |
comment_contract | Add cross-reference comments to validated pairs |
Project Management Tools
| Tool | Description |
|---|---|
init_project | Initialize a trace project with .trace-mcp config |
watch | Watch files for changes and auto-revalidate |
get_project_status | Get project config, cache state, and validation results |
Tool Details
extract_schemas
Extract MCP tool definitions (ProducerSchemas) from server source code. Scans for server.tool() calls and parses their Zod schemas. Also supports OpenAPI, TypeScript interfaces, tRPC routers, REST endpoints, and GraphQL schemas.
Parameters:
rootDir(required): Root directory of server source codeinclude: Glob patterns to include (default:**/*.ts)exclude: Glob patterns to exclude (default:node_modules,dist)
Example:
const result = await client.callTool("extract_schemas", {
rootDir: "./backend/src",
});
// Returns: { success: true, count: 12, schemas: [...] }
extract_file
Extract MCP tool definitions from a single TypeScript file.
Parameters:
filePath(required): Path to a TypeScript file
trace_usage
Trace how client code uses MCP tools. Finds callTool() invocations, HTTP client calls, and GraphQL hooks, tracking which properties are accessed on results.
Parameters:
rootDir(required): Root directory of consumer source codeinclude: Glob patterns to includeexclude: Glob patterns to exclude
trace_file
Trace MCP tool usage in a single TypeScript file.
Parameters:
filePath(required): Path to a TypeScript file
compare
Full analysis pipeline: extract producer schemas, trace consumer usage, and compare them to find mismatches.
Parameters:
producerDir(required): Path to MCP server source directoryconsumerDir(required): Path to consumer/client source directoryformat: Output format (json,markdown,summary)strict: Strict mode - treat missing optional properties as warningsdirection: Data flow direction (producer_to_consumer,consumer_to_producer,bidirectional)
Example Output (Markdown):
# mnehmos.trace.mcp Analysis Report
**Generated**: 2025-12-11T02:11:48.624Z
## Summary
| Metric | Count |
| ----------- | ----- |
| Total Tools | 12 |
| Total Calls | 34 |
| Matches | 31 |
| Mismatches | 3 |
## Mismatches
### get_character
- **Type**: MISSING_PROPERTY
- **Description**: Consumer expects "characterClass" but producer has "class"
- **Consumer**: ./components/CharacterSheet.tsx:45
- **Producer**: ./tools/character.ts:23
scaffold_consumer
Generate consumer code from a producer schema. Creates TypeScript functions, React hooks, or Zustand actions that correctly call MCP tools.
Parameters:
producerDir(required): Path to MCP server source directorytoolName(required): Name of the tool to scaffoldtarget: Output format (typescript,javascript,react-hook,zustand-action)includeErrorHandling: Include try/catch error handling (default: true)includeTypes: Include TypeScript type definitions (default: true)
Example Output:
/**
* Get character data
* @trace-contract CONSUMER
* Producer: ./server/character-tools.ts:23
*/
export async function getCharacter(
client: McpClient,
args: GetCharacterArgs
): Promise<GetCharacterResult> {
try {
const result = await client.callTool("get_character", args);
return JSON.parse(result.content[0].text);
} catch (error) {
console.error("Error calling get_character:", error);
throw error;
}
}
scaffold_producer
Generate producer schema stub from consumer usage. Creates MCP tool definition based on how client code calls it.
Parameters:
consumerDir(required): Path to consumer source directorytoolName(required): Name of the tool to scaffoldincludeHandler: Include handler stub (default: true)
Example Output:
import { z } from "zod";
// Tool: get_character
// Scaffolded from consumer at ./components/CharacterSheet.tsx:14
// @trace-contract PRODUCER (scaffolded)
server.tool(
"get_character",
"TODO: Add description",
{
characterId: z.string(),
},
async (args) => {
// TODO: Implement handler
// Consumer expects: name, race, level, stats, characterClass
return {
content: [
{
type: "text",
text: JSON.stringify({
name: null, // TODO
race: null, // TODO
level: null, // TODO
}),
},
],
};
}
);
comment_contract
Add cross-reference comments to validated producer/consumer pairs. Documents the contract relationship in both files.
Parameters:
producerDir(required): Path to MCP server source directoryconsumerDir(required): Path to consumer source directorytoolName(required): Name of the validated tooldryRun: Preview without writing (default: true)style: Comment style (jsdoc,inline,block)
Example Preview:
// Producer comment:
/*
* @trace-contract PRODUCER
* Tool: get_character
* Consumer: ./components/CharacterSheet.tsx:14
* Args: characterId
* Validated: 2025-12-11
*/
// Consumer comment:
/*
* @trace-contract CONSUMER
* Tool: get_character
* Producer: ./server/character-tools.ts:23
* Required Args: characterId
* Validated: 2025-12-11
*/
init_project
Initialize a trace project with .trace-mcp config directory for watch mode and caching.
Parameters:
projectDir(required): Root directory for the trace projectproducerPath(required): Relative path to producer/server codeconsumerPath(required): Relative path to consumer/client codeproducerLanguage: Language (typescript,python,go,rust,json_schema)consumerLanguage: Language (typescript,python,go,rust,json_schema)
Example:
const result = await client.callTool("init_project", {
projectDir: "./my-app",
producerPath: "./backend/src",
consumerPath: "./frontend/src",
});
// Creates: ./my-app/.trace-mcp/config.json
watch
Watch project files for changes and auto-revalidate contracts.
Parameters:
projectDir(required): Root directory with.trace-mcpconfigaction:start,stop,status, orpoll
Actions:
start: Begin watching for file changesstop: Stop watchingstatus: Check current watcher statepoll: Get pending events and last validation result
get_project_status
Get the status of a trace project including config, cache state, and last validation result.
Parameters:
projectDir(required): Root directory with.trace-mcpconfig
Example Output:
{
"success": true,
"exists": true,
"projectDir": "/path/to/project",
"config": {
"producer": { "path": "./server", "language": "typescript" },
"consumer": { "path": "./client", "language": "typescript" }
},
"isWatching": true,
"watcherStatus": { "running": true, "pendingChanges": 0 }
}
Typical Workflow
1. Quick One-Off Analysis
// Compare backend vs frontend, get markdown report
const result = await client.callTool("compare", {
producerDir: "./backend/src",
consumerDir: "./frontend/src",
format: "markdown",
});
2. Continuous Validation (Watch Mode)
// Initialize project
await client.callTool("init_project", {
projectDir: ".",
producerPath: "./server",
consumerPath: "./client",
});
// Start watching
await client.callTool("watch", {
projectDir: ".",
action: "start",
});
// Later: poll for results
const status = await client.callTool("watch", {
projectDir: ".",
action: "poll",
});
3. Generate Missing Code
// Generate client code from server schema
const consumer = await client.callTool("scaffold_consumer", {
producerDir: "./server",
toolName: "get_character",
target: "react-hook",
});
// Or generate server stub from client usage
const producer = await client.callTool("scaffold_producer", {
consumerDir: "./client",
toolName: "save_settings",
});
4. Extract Multiple Formats
// Extract from MCP server
const mcpSchemas = await client.callTool("extract_schemas", {
rootDir: "./backend/mcp",
include: ["**/*.ts"],
});
// Extract from OpenAPI specification
const openApiSchemas = await client.callTool("extract_schemas", {
rootDir: "./backend",
include: ["**/*.openapi.yaml"],
});
// Extract from tRPC router
const trpcSchemas = await client.callTool("extract_schemas", {
rootDir: "./backend/trpc",
include: ["**/*.router.ts"],
});
// Extract TypeScript interfaces
const interfaceSchemas = await client.callTool("extract_schemas", {
rootDir: "./shared",
include: ["**/*.types.ts"],
});
// Extract REST endpoints (Express/Fastify)
const restSchemas = await client.callTool("extract_schemas", {
rootDir: "./backend/routes",
include: ["**/*.ts"],
});
// Extract GraphQL schemas
const graphqlSchemas = await client.callTool("extract_schemas", {
rootDir: "./backend/graphql",
include: ["**/*.graphql", "**/resolvers.ts"],
});
5. Full-Stack GraphQL Validation
// Extract GraphQL schema and resolvers
const producer = await client.callTool("extract_schemas", {
rootDir: "./backend",
include: ["**/*.graphql", "**/resolvers/**/*.ts"],
});
// Trace Apollo Client hooks
const consumer = await client.callTool("trace_usage", {
rootDir: "./frontend/src",
include: ["**/*.tsx"],
});
// Compare for schema drift
const report = await client.callTool("compare", {
producerDir: "./backend",
consumerDir: "./frontend/src",
format: "markdown",
});
Roadmap
Completed
- MCP tool schema extraction
- Consumer usage tracing
- Basic mismatch detection
- Code scaffolding (consumer & producer)
- Contract comments
- Watch mode with auto-revalidation
- OpenAPI/Swagger adapter support
- TypeScript interface extraction
- tRPC router support
- Pluggable adapter registry
- Pattern Matcher abstraction (Phase 2)
- Cross-file import resolution (Phase 2)
- REST endpoint detection - Express & Fastify (Phase 2)
- HTTP client tracing - fetch & axios (Phase 2)
- GraphQL support - SDL, Apollo Server, Apollo Client (Phase 2)
- Python language support - FastAPI, Flask, MCP tools, Pydantic (Phase 3)
- Go language support - Chi, Gin, stdlib handlers, structs (Phase 3)
- gRPC/Protobuf support - proto3, messages, services, streaming (Phase 3)
- Python HTTP client tracing - requests, httpx, aiohttp (Phase 3)
Planned
- JSON Schema adapter
- WebSocket message tracing
- OpenTelemetry integration
- Rust language support
- Java/Kotlin language support
License
MIT