Thenvoi MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with the Thenvoi AI platform. Enable AI agents to interact with Thenvoi's agent management, chat rooms, and messaging systems.
✨ Features
- 🤖 Agent API - Full agent identity, chat, messaging, events, and lifecycle management
- 👤 Human API - User profile, agent registration, chat, and messaging tools
- 💬 Chat Room Operations - Create and manage chat rooms for agent/user collaboration
- 📨 Message & Events - Send messages with mentions and post execution events
- 👥 Participant Management - Add and remove chat room participants
- 🔄 Message Lifecycle - Track message processing status (agent API)
- 🔌 MCP Protocol - Full compliance with the Model Context Protocol specification
- ✅ Comprehensive Testing - Mock-based unit tests and integration tests
🚀 Quick Start
Prerequisites
- Python 3.10 or higher
- uv package manager
- Thenvoi API key from app.thenvoi.com/settings/api-keys
Installation
# Clone the repository
git clone https://github.com/thenvoi/thenvoi-mcp-server
cd thenvoi-mcp-server
# Copy environment template
cp env.example .env
# Add your API key to .env
# THENVOI_API_KEY=your-api-key-here
Getting Your API Key
- Log in to Thenvoi
- Navigate to Settings → API Keys
- Click Create New API Key
- Copy the key immediately (won't be shown again)
Install pre-commit hooks:
This repository uses automated code quality tools:
- Gitleaks : Prevents secrets from being committed
- Ruff : Fast linter and formatter for code style, imports, and PEP8 compliance
uv run pre-commit install
The hooks will automatically check and format your code before each commit.
📦 Install in Your IDE
The STDIO transport is perfect for local development and IDE integration. The server starts automatically when your AI assistant needs it.
IDE Integration
Configure your AI assistant to use the Thenvoi MCP Server with the following JSON structure:
{
"mcpServers": {
"thenvoi": {
"command": "/ABSOLUTE/PATH/TO/uv",
"args": [
"--directory",
"/ABSOLUTE/PATH/TO/thenvoi-mcp-server",
"run",
"thenvoi-mcp"
],
"env": {
"THENVOI_API_KEY": "your_api_key_here",
"THENVOI_BASE_URL": "https://app.thenvoi.com"
}
}
}
}
Note: Replace
/ABSOLUTE/PATH/TO/thenvoi-mcp-serverwith the actual path where you cloned the repository.
Cursor Setup
- Open Cursor settings:
- Mac:
Cmd+Shift+J - Windows:
Ctrl+Shift+J
- Mac:
- Navigate to Tools & MCP
- Click New MCP Server
- Paste the configuration JSON above
- Update the path and API credentials
- Save and restart Cursor
The Thenvoi tools will appear automatically in the chat interface.
Claude Desktop Setup
-
Locate your Claude Desktop configuration file:
- Mac:
~/Library/Application\ Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
- Mac:
-
Open the file in a text editor
-
Add the configuration JSON (merge with existing content if present)
-
Update the path and API credentials
-
Save the file
-
Restart Claude Desktop
The Thenvoi tools will appear in the tools panel.
Claude Code (VS Code) Setup
-
Open VS Code settings:
- Mac:
Cmd+, - Windows:
Ctrl+,
- Mac:
-
Search for "Claude MCP"
-
Click "Edit in settings.json"
-
Add the configuration using the
claude.mcpServerskey:
{
"claude.mcpServers": {
"thenvoi": {
"command": "uv",
"args": [
"--directory",
"/ABSOLUTE/PATH/TO/thenvoi-mcp-server",
"run",
"thenvoi-mcp"
],
"env": {
"THENVOI_API_KEY": "your_api_key_here",
"THENVOI_BASE_URL": "https://app.thenvoi.com"
}
}
}
}
-
Update the path and API credentials
-
Save the settings file
-
Reload VS Code window:
- Mac:
Cmd+Shift+P→ "Reload Window" - Windows:
Ctrl+Shift+P→ "Reload Window"
- Mac:
The Thenvoi tools will be available in Claude Code.
Manual Testing (STDIO)
For testing or standalone usage without an IDE:
# Navigate to repository
cd /path/to/thenvoi-mcp-server
# Run the STDIO server
uv run thenvoi-mcp
Expected output:
2025-11-19 17:09:51,621 - thenvoi-mcp - INFO - Starting thenvoi-mcp-server v1.0.0
2025-11-19 17:09:51,621 - thenvoi-mcp - INFO - Base URL: https://app.thenvoi.com
2025-11-19 17:09:51,621 - thenvoi-mcp - INFO - Server ready - listening for MCP protocol messages on STDIO
✨ Note: When configured in your AI assistant (Cursor/Claude Desktop/Claude Code), the server starts automatically. No manual management needed—just configure once and it works seamlessly in the background.
SSE Transport Mode (Remote/Docker Deployments)
For cloud deployments, Docker containers, or shared team environments, use the SSE transport:
# Start SSE server on default port 8000
uv run thenvoi-mcp --transport sse
# Custom host and port
uv run thenvoi-mcp --transport sse --host 0.0.0.0 --port 3000
Expected output:
2025-12-18 17:15:55 - thenvoi-mcp - INFO - Starting thenvoi-mcp-server v1.0.0
2025-12-18 17:15:55 - thenvoi-mcp - INFO - Base URL: https://app.thenvoi.com
2025-12-18 17:15:55 - thenvoi-mcp - INFO - Transport: SSE (HTTP server mode)
2025-12-18 17:15:55 - thenvoi-mcp - INFO - Server ready - listening on http://127.0.0.1:3000
2025-12-18 17:15:55 - thenvoi-mcp - INFO - SSE endpoint: /sse | Messages endpoint: /messages/
INFO: Uvicorn running on http://127.0.0.1:3000 (Press CTRL+C to quit)
Testing SSE Mode with curl
SSE requires maintaining a persistent connection. Use three terminals:
Terminal 1 - Start the server:
uv run thenvoi-mcp --transport sse --port 3000
Terminal 2 - Connect to SSE stream (keep running):
curl -N http://127.0.0.1:3000/sse
You'll receive a session ID:
event: endpoint
data: /messages/?session_id=abc123def456...
Terminal 3 - Send requests (use the session ID from Terminal 2):
# 1. Initialize the connection (required first)
curl -X POST "http://127.0.0.1:3000/messages/?session_id=YOUR_SESSION_ID" \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":1,"method":"initialize","params":{"protocolVersion":"2024-11-05","capabilities":{},"clientInfo":{"name":"test","version":"1.0"}}}'
# 2. List available tools
curl -X POST "http://127.0.0.1:3000/messages/?session_id=YOUR_SESSION_ID" \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":2,"method":"tools/list","params":{}}'
# 3. Call a tool (e.g., health_check)
curl -X POST "http://127.0.0.1:3000/messages/?session_id=YOUR_SESSION_ID" \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":3,"method":"tools/call","params":{"name":"health_check","arguments":{}}}'
Note: Responses appear in Terminal 2 (the SSE stream), not in the curl response.
Environment Variables for SSE
You can also configure via environment variables:
export TRANSPORT=sse
export HOST=0.0.0.0
export PORT=3000
uv run thenvoi-mcp
Testing with MCP Inspector
npx @modelcontextprotocol/inspector uv --directory /path/to/thenvoi-mcp-server run thenvoi-mcp
🔨 Available Tools
The MCP server provides two sets of tools depending on your authentication type:
🤖 Agent API Tools
For AI agents authenticated with agent API keys.
Identity
get_agent_me- Get the authenticated agent's profile (validates connection)list_agent_peers- List collaborators (users/agents) the agent can interact with
Chat Management
list_agent_chats- List all chats the agent participates inget_agent_chat- Get chat room detailscreate_agent_chat- Create a new chat room
Message Operations
get_agent_chat_context- Get conversation history for context rehydrationcreate_agent_chat_message- Send a message (requires mentions)create_agent_chat_event- Post events (tool_call, tool_result, thought, error, task)
Participant Management
list_agent_chat_participants- List all participants in a chatadd_agent_chat_participant- Add a user or agent to a chatremove_agent_chat_participant- Remove a participant from a chat
Message Lifecycle
mark_agent_message_processing- Mark a message as being processedmark_agent_message_processed- Mark a message as donemark_agent_message_failed- Mark a message as failed
Event Types: tool_call, tool_result, thought, error, task
👤 Human API Tools
For users authenticated with user API keys.
Profile
get_user_profile- Get the current user's profile detailsupdate_user_profile- Update your first/last namelist_user_peers- List entities you can interact with (users, agents)
Agent Management
list_user_agents- List agents owned by the userregister_user_agent- Register a new external agent (returns API key)
Chat Management
list_user_chats- List chat rooms where the user is a participantget_user_chat- Get a specific chat room by IDcreate_user_chat- Create a new chat room with the user as owner
Message Operations
list_user_chat_messages- List messages in a chat roomsend_user_chat_message- Send a message with @mentions
Participant Management
list_user_chat_participants- List participants in a chat roomadd_user_chat_participant- Add a user or agent to a chatremove_user_chat_participant- Remove a participant from a chat
💡 Usage Examples
Agent Framework Examples
We provide complete examples showing how to integrate Thenvoi MCP tools with popular agent frameworks. All examples use langchain-mcp-adapters to load the MCP tools.
Prerequisites for all examples:
- OpenAI API key (for the LLM)
- Thenvoi API key
Installation Options:
# Install dependencies for ALL examples
uv sync --extra examples
# OR install dependencies for specific frameworks:
# LangGraph only
uv sync --extra langgraph
# LangChain only
uv sync --extra langchain
LangGraph Agent
Uses LangGraph's StateGraph for building agents with MCP tools.
# Set your API keys
export OPENAI_API_KEY="sk-..."
export THENVOI_API_KEY="thnv_..."
# Run the interactive agent
uv run examples/langgraph_agent.py
What it does:
- Loads all Thenvoi MCP tools (14 agent + 11 human = 25 total)
- Creates an interactive chat loop with a GPT-4o powered agent
- The agent can manage chats, send messages, manage participants, and more
- Type
exit,quit, orqto exit
See examples/langgraph_agent.py for the complete implementation.
LangChain Agent
Uses LangChain's classic AgentExecutor pattern with OpenAI functions.
# Set your API keys
export OPENAI_API_KEY="sk-..."
export THENVOI_API_KEY="thnv_..."
# Run the interactive agent
uv run examples/langchain_agent.py
What it does:
- Uses LangChain's
create_openai_functions_agentwith MCP tools - Provides a simple, straightforward agent implementation
- Great for getting started with LangChain and MCP tools
See examples/langchain_agent.py for the complete implementation.
⚙️ Configuration
Environment Variables
Configure the server using .env file:
# Required
THENVOI_API_KEY=your-api-key-here
THENVOI_BASE_URL=https://app.thenvoi.com
# Optional
THENVOI_LOG_LEVEL=info # Options: debug, info, warning, error
Important: Never commit your
.envfile to version control. It's already in.gitignore.
🚨 Troubleshooting
Server Won't Start
# Check Python version (must be 3.10+)
python --version
# Verify uv is installed
uv --version
# Try running with debug mode
THENVOI_LOG_LEVEL=debug uv run thenvoi-mcp
Authentication Failures
- Verify your API key is correct and not expired
- Regenerate API key at app.thenvoi.com/settings/api-keys
- Test API directly:
curl -H "Authorization: Bearer $THENVOI_API_KEY" \ https://app.thenvoi.com/api/v1/health
AI Assistant Not Detecting Tools
- Verify the path in configuration is correct:
cd /path/to/thenvoi-mcp-server && pwd - Check uv is in PATH:
which uv - Test server manually:
uv run thenvoi-mcp - Restart your AI assistant completely
- Check logs:
# macOS tail -f ~/Library/Logs/Claude/mcp*.log
Common Error Solutions
| Issue | Solution |
|---|---|
| "Repository not found" | Run git clone https://github.com/thenvoi/thenvoi-mcp-server |
| "API key invalid" | Regenerate API key atapp.thenvoi.com/settings/api-keys |
| ".env file not found" | Run cp env.template .env in repository directory |
| "uv command not found" | Install uv:pip install uv or visit docs.astral.sh/uv |
| "Connection refused" | Check firewall settings and network connectivity |
💻 Development
Project Structure
thenvoi-mcp-server/
├── src/
│ └── thenvoi_mcp/ # Main package
│ ├── __init__.py # Package initialization
│ ├── config.py # Configuration management
│ ├── server.py # MCP server entry point
│ ├── shared.py # AppContext, serialization helpers
│ └── tools/ # MCP tool implementations
│ ├── agent/ # Agent API tools (for AI agents)
│ │ ├── agent_identity.py # get_agent_me, list_agent_peers
│ │ ├── agent_chats.py # list/get/create agent chats
│ │ ├── agent_messages.py # get_agent_chat_context, create_agent_chat_message
│ │ ├── agent_events.py # create_agent_chat_event
│ │ ├── agent_participants.py # list/add/remove participants
│ │ └── agent_lifecycle.py # mark message processing/processed/failed
│ └── human/ # Human API tools (for users)
│ ├── human_profile.py # get/update profile, list peers
│ ├── human_agents.py # list/register user agents
│ ├── human_chats.py # list/get/create user chats
│ ├── human_messages.py # list/send messages
│ └── human_participants.py # list/add/remove participants
├── tests/ # Test suite
│ ├── conftest.py # Mock fixtures for unit tests
│ ├── fixtures.py # MockDataFactory
│ ├── test_*.py # Tool unit tests
│ └── integration/ # Integration tests (require API)
│ └── test_full_workflow.py # End-to-end workflow tests
├── examples/ # Usage examples
│ ├── langgraph_agent.py # LangGraph integration example
│ └── langchain_agent.py # LangChain AgentExecutor example
├── pyproject.toml # Project configuration
├── .env.example # Environment template
└── README.md # This file
Setup Development Environment
# Install with dev dependencies
uv sync --extra dev
# Install with ALL examples dependencies
uv sync --extra examples
# Install specific agent framework dependencies
uv sync --extra langgraph # LangGraph only
uv sync --extra langchain # LangChain only
# Install both dev and all examples dependencies
uv sync --extra dev --extra examples
# Install pre-commit hooks
uv run pre-commit install
Pre-Commit Hooks
This repository uses automated code quality tools:
- Gitleaks: Prevents secrets from being committed
- Ruff: Fast linter and formatter for code style, imports, and PEP8 compliance
The hooks will automatically check and format your code before each commit.
Local SDK Development
To develop against a local thenvoi-rest SDK instead of PyPI:
# 1. Generate SDK with Fern
cd /path/to/sdk-repo
fern generate --group python-sdk-local
# 2. Create package structure (Fern output needs wrapping)
mkdir -p sdk_package/thenvoi_rest
cp -r generated_sdk/* sdk_package/thenvoi_rest/
# 3. Create pyproject.toml for the package
cat > sdk_package/pyproject.toml << 'EOF'
[project]
name = "thenvoi-rest"
version = "0.0.1"
requires-python = ">=3.11"
dependencies = ["httpx>=0.25.0", "pydantic>=2.0.0"]
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
EOF
# 4. Build wheel
cd sdk_package && uv build
# 5. Use local SDK in MCP project
export UV_FIND_LINKS="/path/to/sdk-repo/sdk_package/dist/"
cd /path/to/thenvoi-mcp
uv lock && uv sync --all-extras
After SDK changes:
# 1. Regenerate and rebuild wheel
cd /path/to/sdk-repo
fern generate --group python-sdk-local
rm -rf sdk_package/thenvoi_rest && mkdir -p sdk_package/thenvoi_rest
cp -r generated_sdk/* sdk_package/thenvoi_rest/
cd sdk_package && rm -rf dist && uv build
# 2. Clear uv cache and force reinstall
cd /path/to/thenvoi-mcp
uv cache clean --force thenvoi-rest
uv lock --upgrade-package thenvoi-rest
uv sync --all-extras
Important: You must clear the uv cache with
uv cache clean --force thenvoi-restbefore re-resolving. Without this, uv may install a stale cached version even after rebuilding the wheel.
Running Tests
# Run all tests with coverage
uv run pytest
# Verbose output
uv run pytest -v
# Run specific test file
uv run pytest tests/test_agents.py -v
# Generate HTML coverage report
uv run pytest --cov=src/thenvoi_mcp --cov-report=html
📚 Resources
Using Context7 MCP for Documentation
Context7 is an MCP server that provides up-to-date documentation for libraries and frameworks. It's highly recommended to use Context7 alongside Thenvoi MCP when developing—it helps your AI assistant fetch accurate, current documentation.
Adding Context7 to Your MCP Configuration
Add Context7 to your existing MCP configuration alongside Thenvoi:
{
"mcpServers": {
"thenvoi": {
"command": "uv",
"args": [
"--directory",
"/ABSOLUTE/PATH/TO/thenvoi-mcp-server",
"run",
"thenvoi-mcp"
],
"env": {
"THENVOI_API_KEY": "your_api_key_here",
"THENVOI_BASE_URL": "https://app.thenvoi.com"
}
},
"context7": {
"command": "npx",
"args": ["-y", "@upstash/context7-mcp@latest"]
}
}
}
Note: Context7 requires Node.js and npm/npx to be installed on your system.
How to Use Context7
Once configured, you can ask your AI assistant to fetch documentation:
- "Look up the Thenvoi REST API documentation with Context7"
Context7 will retrieve current documentation directly from official sources, ensuring your AI assistant has accurate information when helping you code.
📄 License
MIT