MCP Hub
Back to servers

TiDB

A unified Python SDK and MCP server for TiDB that enables vector, full-text, and hybrid search alongside traditional SQL operations and transaction management.

Stars
29
Forks
16
Updated
Dec 12, 2025
Validated
Jan 11, 2026

TiDB Python AI SDK

Python Package Index Monthly PyPI Downloads Total PyPI Downloads

Quick StartDocumentationExamplesRoadmapDiscordReport Bug

Introduction

Python SDK for TiDB AI: A unified data platform empowering developers to build next-generation AI applications.

  • 🔍 Unified Search Modes: Vector · Full‑Text · Hybrid
  • 🎭 Auto‑Embedding & Multi‑Modal Storage: Support for text, images, and more
  • 🖼️ Image Search Support: Text‑to‑image and image‑to‑image retrieval capabilities
  • 🎯 Advanced Filtering & Reranking: Flexible filters with optional reranker models to fine-tune result relevance
  • 💱 Transaction Support: Full transaction management including commit/rollback to ensure consistency

Installation

[!NOTE] This Python package is under rapid development and its API may change. It is recommended to use a fixed version when installing, e.g., pytidb==0.0.12.

pip install pytidb

# To use built-in embedding functions and rerankers:
pip install "pytidb[models]"

# To convert query results to pandas DataFrame:
pip install pandas

Connect to TiDB Cloud

Create a free TiDB cluster at tidbcloud.com.

import os
from pytidb import TiDBClient

tidb_client = TiDBClient.connect(
    host=os.getenv("TIDB_HOST"),
    port=int(os.getenv("TIDB_PORT")),
    username=os.getenv("TIDB_USERNAME"),
    password=os.getenv("TIDB_PASSWORD"),
    database=os.getenv("TIDB_DATABASE"),
    ensure_db=True,
)

Highlights

🤖 Automatic Embedding

PyTiDB automatically embeds text fields (e.g., text) and stores the vector embedding in a vector field (e.g., text_vec).

Create a table with an embedding function:

from pytidb.schema import TableModel, Field, FullTextField
from pytidb.embeddings import EmbeddingFunction

# Set API key for embedding provider.
tidb_client.configure_embedding_provider("openai", api_key=os.getenv("OPENAI_API_KEY"))

class Chunk(TableModel):
    __tablename__ = "chunks"

    id: int = Field(primary_key=True)
    text: str = FullTextField()
    text_vec: list[float] = EmbeddingFunction(
        "openai/text-embedding-3-small"
    ).VectorField(source_field="text")  # 👈 Defines the vector field.
    user_id: int = Field()

table = tidb_client.create_table(schema=Chunk, if_exists="skip")

Bulk insert data:

table.bulk_insert([
    Chunk(id=2, text="bar", user_id=2),   # 👈 The text field is embedded and saved to text_vec automatically.
    Chunk(id=3, text="baz", user_id=3),
    Chunk(id=4, text="qux", user_id=4),
])

🔍 Search

Vector Search

Vector search finds the most relevant records based on semantic similarity, so you don't need to include all keywords explicitly in your query.

df = (
  table.search("<query>")  # 👈 The query is embedded automatically.
    .filter({"user_id": 2})
    .limit(2)
    .to_list()
)
# Output: A list of dicts.

See the Vector Search example for more details.

Full-text Search

Full-text search tokenizes the query and finds the most relevant records by matching exact keywords.

df = (
  table.search("<query>", search_type="fulltext")
    .limit(2)
    .to_pydantic()
)
# Output: A list of pydantic model instances.

See the Full-text Search example for more details.

Hybrid Search

Hybrid search combines exact matching from full-text search with semantic understanding from vector search, delivering more relevant and reliable results.

df = (
  table.search("<query>", search_type="hybrid")
    .limit(2)
    .to_pandas()
)
# Output: A pandas DataFrame.

See the Hybrid Search example for more details.

Image Search

Image search lets you find visually similar images using natural language descriptions or another image as a reference.

from PIL import Image
from pytidb.schema import TableModel, Field
from pytidb.embeddings import EmbeddingFunction

# Define a multi-modal embedding model.
jina_embed_fn = EmbeddingFunction("jina_ai/jina-embeddings-v4")  # Using multi-modal embedding model.

class Pet(TableModel):
    __tablename__ = "pets"
    id: int = Field(primary_key=True)
    image_uri: str = Field()
    image_vec: list[float] = jina_embed_fn.VectorField(
        source_field="image_uri",
        source_type="image"
    )

table = tidb_client.create_table(schema=Pet, if_exists="skip")

# Insert sample images ...
table.insert(Pet(image_uri="path/to/shiba_inu_14.jpg"))

# Search for images using natural language
results = table.search("shiba inu dog").limit(1).to_list()

# Search for images using an image ...
query_image = Image.open("shiba_inu_15.jpg")
results = table.search(query_image).limit(1).to_pydantic()

See the Image Search example for more details.

Advanced Filtering

PyTiDB supports a variety of operators for flexible filtering:

OperatorDescriptionExample
$eqEqual to{"field": {"$eq": "hello"}}
$gtGreater than{"field": {"$gt": 1}}
$gteGreater than or equal{"field": {"$gte": 1}}
$ltLess than{"field": {"$lt": 1}}
$lteLess than or equal{"field": {"$lte": 1}}
$inIn array{"field": {"$in": [1, 2, 3]}}
$ninNot in array{"field": {"$nin": [1, 2, 3]}}
$andLogical AND{"$and": [{"field1": 1}, {"field2": 2}]}
$orLogical OR{"$or": [{"field1": 1}, {"field2": 2}]}

⛓ Join Structured and Unstructured Data

from pytidb import Session
from pytidb.sql import select

# Create a table to store user data:
class User(TableModel):
    __tablename__ = "users"
    id: int = Field(primary_key=True)
    name: str = Field(max_length=20)

# Use the db_engine from TiDBClient when creating a Session
with Session(tidb_client.db_engine) as session:
    query = (
        select(Chunk).join(User, Chunk.user_id == User.id).where(User.name == "Alice")
    )
    chunks = session.exec(query).all()

[(c.id, c.text, c.user_id) for c in chunks]

💱 Transaction Support

PyTiDB supports transaction management, helping you avoid race conditions and ensure data consistency.

with tidb_client.session() as session:
    initial_total_balance = tidb_client.query("SELECT SUM(balance) FROM players").scalar()

    # Transfer 10 coins from player 1 to player 2
    tidb_client.execute("UPDATE players SET balance = balance - 10 WHERE id = 1")
    tidb_client.execute("UPDATE players SET balance = balance + 10 WHERE id = 2")

    session.commit()
    # or session.rollback()

    final_total_balance = tidb_client.query("SELECT SUM(balance) FROM players").scalar()
    assert final_total_balance == initial_total_balance

Extensions

[!TIP] Click the button below to install TiDB MCP Server in Cursor. Then, confirm by clicking Install when prompted.

Install TiDB MCP Server

Reviews

No reviews yet

Sign in to write a review