MCP Traits Matcher
Description
A personality analysis server built using the FastMCP framework. It provides tools and resources for personality analysis and matching. The system analyzes personality traits based on friendliness and dominance scores, allowing you to create persons, define traits, and find matches for job descriptions.
Architecture Overview
The application consists of several key components:
- FastMCP Server: Handles HTTP requests and provides MCP protocol endpoints
- Data Access Objects (DAOs): Manage database interactions for persons and traits
- Pydantic Models: Define data structures and validation
- Tools and Resources: Expose functionality through MCP endpoints
graph TD
A[FastMCP Server] --> B[Tools: create_person, add_description, etc.]
A --> C[Resources: persons://all, traits://all]
B --> D[MCPPersonDAO]
B --> E[MCPTraitDAO]
C --> D
C --> E
D --> F[SQLite: mcp_persons.db]
E --> G[SQLite: mcp_traits.db]
Features
- Creates persons and traits with personality scores
- Adds descriptions to persons, updating their personality based on traits
- Finds people matching a company's job description using Euclidean distance
- Exposes resources for listing persons and traits
- RESTful API endpoints for programmatic access
Setup Instructions
Prerequisites
- Python 3.8+
- uv (Python package manager)
Installation
-
Clone the repository:
git clone <repository-url> cd mcp-traits-matcher -
Create a virtual environment:
python -m uv venv .venv -
Activate the virtual environment:
- Windows:
.venv\Scripts\activate - Linux/macOS:
source .venv/bin/activate
- Windows:
-
Install dependencies:
.venv\Scripts\python.exe -m uv pip install -e .[test]
Database Setup
The server uses SQLite databases (mcp_persons.db and mcp_traits.db). These databases will be created automatically when the server is run. You can configure the database paths using environment variables:
export MCP_PERSONS_DB=custom_persons.db
export MCP_TRAITS_DB=custom_traits.db
Configuration
Create a .env file in the project root:
MCP_PERSONS_DB=mcp_persons.db
MCP_TRAITS_DB=mcp_traits.db
LOG_LEVEL=INFO
Usage Examples
Creating a person
result = await mcp.create_person(name="John Doe")
print(result) # "Person 'John Doe' created."
Adding a description to a person
result = await mcp.add_description(name="John Doe", description="friendly and dominant")
print(result) # "Description added to person 'John Doe'."
Creating a trait
result = await mcp.create_trait(name="friendly", friendliness=8.0, dominance=2.0)
print(result) # "Trait 'friendly' created with friendliness: 8.0, dominance: 2.0."
Finding matches for a job description
matches = await mcp.find_matches(
company_name="Acme Corp",
job_description="Looking for friendly and dominant candidates"
)
print(matches) # ["John Doe", "Jane Smith"]
Listing all persons
import requests
response = requests.get("http://localhost:8000/persons://all")
persons = response.json()
print(persons)
API Documentation
Resources
| Resource | Description | Response Format |
|---|---|---|
persons://all | Lists all persons | JSON array of person objects |
traits://all | Lists all traits | JSON array of trait objects |
persons://{name} | Gets a person by name | JSON object |
Example Response for persons://all:
[
{
"name": "John Doe",
"friendliness": 7.5,
"dominance": 3.2
}
]
Tools
| Tool | Parameters | Description |
|---|---|---|
create_person | name: str | Creates a new person with default personality scores |
add_description | name: str, description: str | Updates person's personality based on traits in description |
create_trait | name: str, friendliness: float, dominance: float | Creates a new personality trait |
find_matches | company_name: str, job_description: str | Finds persons matching job requirements |
Error Handling
The API returns appropriate HTTP status codes and error messages:
400 Bad Request: Invalid input parameters404 Not Found: Person or trait not found500 Internal Server Error: Database or server errors
Development
Running Tests
.venv\Scripts\python.exe -m pytest tests/
Running the Server
.venv\Scripts\python.exe -m src.traits_matcher_server
The server will start on http://localhost:8000
Troubleshooting
Common Issues
- Database Connection Errors: Ensure the database files are writable and not corrupted
- Import Errors: Verify all dependencies are installed correctly
- Port Already in Use: Change the port using environment variable
PORT=8001
Debugging
Enable debug logging by setting LOG_LEVEL=DEBUG in your .env file.
Dependencies
scipy- Scientific computing for distance calculationspydantic>=2.7.2,<3.0.0- Data validation and serializationfastmcp- MCP frameworkpython-dotenv- Environment variable managementpytest- Testing framework (dev dependency)
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Make your changes and add tests
- Run tests:
pytest - Commit your changes:
git commit -m 'Add amazing feature' - Push to the branch:
git push origin feature/amazing-feature - Open a Pull Request
License
This project is licensed under the MIT-0 License - see the LICENSE file for details.