VisualAI MCP Server
Local AI image generation via Model Context Protocol (MCP) using MLX on Apple Silicon.
Features
- Iterate on Designs: Conversational modifications to Figma mockups
- Generate Assets: Professional icons, banners, mockups
- Create Wireframes: Build wireframes through conversation
- 100% Local: Zero API costs, full control
- Apple Silicon Optimized: MLX framework with Metal GPU acceleration
Requirements
- Hardware: Mac with Apple Silicon (M1, M2, M3, M4 or newer)
- Software:
- macOS 12+ (Monterey or later)
- Node.js 18+
- Python 3.9+ (included in macOS)
Quick Start
1. Installation
npm install
npm run build
2. Setup Wizard (First Time - ~5 minutes)
When you first run the server, an interactive setup wizard will automatically start:
npm start
The wizard will automatically:
Step 1: Python Detection (< 1 min)
- Verifies Python 3.9+ is installed
- Suggests Homebrew install if not found:
brew install python@3.11 - Auto-detects common Python paths
Step 2: Dependency Installation (2-5 min)
- Installs: mlx, huggingface-hub, pillow, torch
- Creates isolated environment in
~/.visualai/venv - Shows progress for each package
Step 3: Model Download (15-40 min, depending on connection)
- Downloads Stable Diffusion 2.1 (~5-7GB) from Hugging Face Hub
- Saves to
~/.visualai/models/ - Auto-resume if download is interrupted
- Shows download progress with ETA
Step 4: Health Check (< 30 sec)
- Generates test image (256x256) to validate setup
- Auto-injects
claude_desktop_config.json - Confirms MCP server is ready
Progress Feedback:
- Visual spinner for each step
- Time estimates for operations > 5 seconds
- Bandwidth tracking for model download
After setup completes, you'll see:
✅ Setup complete! VisualAI is ready to use.
Next steps:
1. Restart Claude Desktop to activate the VisualAI MCP server
2. Open Claude and check MCP servers list (should show "visualai")
3. Start using VisualAI tools!
3. Configuration
Copy .env.example to .env and customize if needed:
cp .env.example .env
Default settings work for most users.
Claude Desktop Configuration
The setup wizard automatically injects VisualAI MCP server configuration into claude_desktop_config.json:
Platform-specific paths:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
Auto-injected configuration:
{
"mcpServers": {
"visualai": {
"command": "node",
"args": ["/absolute/path/to/visualai-workspace/dist/index.js"],
"env": {
"PYTHON_PATH": "/path/to/python3",
"MODEL_CACHE_DIR": "~/.cache/huggingface/"
}
}
}
}
The wizard preserves any existing MCP servers in your config.
Manual configuration (only if auto-injection fails):
- Open
claude_desktop_config.jsonin your editor - Add the VisualAI server configuration shown above
- Update paths to match your system
- Restart Claude Desktop
4. Start Server
npm start
The server uses stdin/stdout (JSON-RPC) as per MCP protocol.
MCP Tools
generate-image
Generate image from text prompt.
Input:
{
"prompt": "A serene lake at sunset",
"width": 512,
"height": 512,
"steps": 20,
"guidance_scale": 7.5,
"seed": 42
}
Output:
- Base64 encoded PNG image
- Metadata (prompt, dimensions, latency, etc.)
- Session ID for iteration tracking
check-engine-status
Check MLX engine and dependencies status.
Input: None
Output:
- Engine ready status
- Dependencies list with versions
- Model path
list-sessions
List all available sessions.
Input: None
Output: Array of sessions with metadata
rollback-iteration
Revert to a previous iteration in a session.
Input:
{
"sessionId": "session-abc123",
"iterationIndex": 2
}
preview-iteration
Preview a previous iteration without modifying session.
Input:
{
"sessionId": "session-abc123",
"iterationIndex": 2
}
Architecture
- Engine: MLX (Apple's ML framework for Apple Silicon)
- Model: Stable Diffusion 2.1 (~5GB)
- Protocol: MCP via stdin/stdout (JSON-RPC 2.0)
- Sessions: File-based in
~/.visualai/sessions/ - Performance: 8-15s per image (512x512) on M4
Setup Flow
npm start (first time)
↓
Auto-installer detects missing setup
├─ Check Python 3.9+ (with brew install fallback)
├─ Create virtualenv in ~/.visualai/venv
├─ Install dependencies (mlx, huggingface-hub, pillow, torch)
└─ Validate with health check
↓
Model downloader
├─ Check ~/.visualai/models/ for existing model
├─ Download from Hugging Face Hub (resume-capable)
└─ Progressive feedback with ETA
↓
claude_desktop_config.json injection
├─ Detect platform-specific path
├─ Create backup of existing config
├─ Merge VisualAI server with existing MCP servers
└─ Validate JSON after write
↓
Server Ready (MCP listening on stdio)
CI/CD & Testing
Automated Testing
This project uses GitHub Actions for continuous integration and automated testing.
Workflows configured:
- 🏗️ Build Validation (
build.yml) - TypeScript compilation and type checking - 🧪 Test Suite (
test.yml) - Unit, integration, acceptance, and E2E tests on Node 18, 20, 22
Test execution:
# All tests
npm test
# Acceptance tests only
npm run test:acceptance
# With coverage report
npm test -- --coverage
# View HTML coverage report
open coverage/lcov-report/index.html
Test Statistics:
- Total test files: 9 (4,210 lines)
- Coverage layers: Unit → Integration → Acceptance → E2E
- Test execution time: ~3 minutes
- CI execution time: ~5 minutes (with coverage upload)
CI/CD Documentation:
See .github/CI-CD-SETUP.md for complete CI/CD configuration details.
Workflow Status:
Development
# Watch mode (development)
npm run dev
# Build
npm run build
# Start
npm start
Project Structure
src/
├── engines/ # MLX engine implementation
├── mcp/ # MCP server and tools
├── session/ # Session management
├── setup/ # Auto-installer and dependency checker
├── types/ # TypeScript interfaces
└── utils/ # Config and logger
Troubleshooting
Python not found
# Check Python version
python3 --version
# If not found, install via Homebrew:
brew install python@3.11
# Re-run setup:
npm start
MLX requires Apple Silicon
Error: "MLX requires Metal GPU on Apple Silicon"
- Your Mac doesn't have Apple Silicon (Intel/T2 chip) = incompatible with current version
- Minimum requirement: M1, M2, M3, or M4 chip
- Workaround: Wait for Phase 2 (Core ML / cloud API support)
Model download hangs or times out
# 1. Check internet connection
ping huggingface.co
# 2. Stop server and restart (auto-resumes download)
npm start
# 3. If still fails, clear cache and retry
rm -rf ~/.visualai/models/.huggingface/
npm start
Memory pressure / out of memory
Symptoms: Generation fails or takes > 60 seconds
- 8GB RAM: Functional but slow (30-60s per image)
- 16GB+ RAM: Optimal performance (8-15s per image)
- Workaround: Close other applications to free memory
Claude Desktop configuration injection fails
# 1. Check if config was injected
cat ~/Library/Application\ Support/Claude/claude_desktop_config.json | grep visualai
# 2. If missing, manually add configuration
# (see Configuration section above for JSON structure)
# 3. Restart Claude Desktop
Build errors
# Clear build artifacts and reinstall
rm -rf dist node_modules
npm install
npm run build
For more detailed troubleshooting, see TROUBLESHOOTING.md
License
MIT